Copyright
©The Author(s) 2020.
Artif Intell Med Imaging. Jun 28, 2020; 1(1): 31-39
Published online Jun 28, 2020. doi: 10.35711/aimi.v1.i1.31
Published online Jun 28, 2020. doi: 10.35711/aimi.v1.i1.31
CAD diagnosis | Method | Task | Category |
Coronary artery extraction | |||
Schaap et al[14] | Linear and nonlinear regression | Artery | ML |
Huang et al[15] | 3D U-net | Artery | DL |
Kong et al[16] | ConvRNN + ConvGRU | Artery | DL |
Shen et al[17] | 3D FCN + level set | Artery | DL |
Wu et al[18] | CNN + nearest neighbor search | Artery | DL |
Wolterink et al[19] | 3D dilated CNN | Centerline | DL |
Coronary plaque detection | |||
Mittal et al[20] | PBT, RF | Calcified | ML |
Kurkure et al[21] | SVM | Calcified | ML |
Wei et al[22] | Linear discriminant analysis | Soft | ML |
Jawaid et al[23] | SVM | Soft | ML |
Tessmann et al[24] | AdaBoost | Multiple | ML |
Kelm et al[25] | PBT, RF | Multiple | ML |
Zhao et al[26] | SVM | Multiple | ML |
Zreik et al[27] | CNN + RNN | Multiple | DL |
Huo et al[28] | Attention recognition dual network | Calcified | DL |
Vulnerable plaque identification | |||
Kolossváry et al[33] | Radiomics | NRS | ML |
Kolossváry et al[2] | Radiomics | LAP &NRS | ML |
Kolossváry et al[34] | Logistic regression, K-nearest neighbors, RF, least angle regression, naive Bayes, Gaussian process classifier, decision trees, DNN | Advanced lesion | ML, DL |
Coronary stenosis assessment | |||
Zuluaga et al[36] | SVM | ASS | ML |
Kang et al[37] | SVM + formula-based analytical method | ASS | ML |
Zreik et al[27] | CNN + RNN | ASS | DL |
Itu et al[41] | DNN | HSS | DL |
Wang et al[42] | DeepVessel-FFR | HSS | DL |
Dey et al[43] | Boosted ensemble algorithm | HSS | ML |
Kumamaru et al[44] | 2D conditional generative adversarial network + 3D convolutional ladder network | HSS | DL |
- Citation: Zhao FJ, Fan SQ, Ren JF, von Deneen KM, He XW, Chen XL. Machine learning for diagnosis of coronary artery disease in computed tomography angiography: A survey. Artif Intell Med Imaging 2020; 1(1): 31-39
- URL: https://www.wjgnet.com/2644-3260/full/v1/i1/31.htm
- DOI: https://dx.doi.org/10.35711/aimi.v1.i1.31