Minireviews
Copyright ©The Author(s) 2020.
Artif Intell Med Imaging. Jun 28, 2020; 1(1): 31-39
Published online Jun 28, 2020. doi: 10.35711/aimi.v1.i1.31
Table 1 Summary of different machine learning-based methods used in coronary artery disease diagnosis
CAD diagnosisMethodTaskCategory
Coronary artery extraction
Schaap et al[14]Linear and nonlinear regressionArteryML
Huang et al[15]3D U-netArteryDL
Kong et al[16]ConvRNN + ConvGRUArteryDL
Shen et al[17]3D FCN + level setArteryDL
Wu et al[18]CNN + nearest neighbor searchArteryDL
Wolterink et al[19]3D dilated CNNCenterlineDL
Coronary plaque detection
Mittal et al[20]PBT, RFCalcifiedML
Kurkure et al[21]SVMCalcifiedML
Wei et al[22]Linear discriminant analysisSoftML
Jawaid et al[23]SVMSoftML
Tessmann et al[24]AdaBoostMultipleML
Kelm et al[25]PBT, RFMultipleML
Zhao et al[26]SVMMultipleML
Zreik et al[27]CNN + RNNMultipleDL
Huo et al[28]Attention recognition dual networkCalcifiedDL
Vulnerable plaque identification
Kolossváry et al[33]RadiomicsNRSML
Kolossváry et al[2]RadiomicsLAP &NRSML
Kolossváry et al[34]Logistic regression, K-nearest neighbors, RF, least angle regression, naive Bayes, Gaussian process classifier, decision trees, DNNAdvanced lesionML, DL
Coronary stenosis assessment
Zuluaga et al[36]SVMASSML
Kang et al[37]SVM + formula-based analytical methodASSML
Zreik et al[27]CNN + RNNASSDL
Itu et al[41]DNNHSSDL
Wang et al[42]DeepVessel-FFRHSSDL
Dey et al[43]Boosted ensemble algorithmHSSML
Kumamaru et al[44]2D conditional generative adversarial network + 3D convolutional ladder networkHSSDL