BPG is committed to discovery and dissemination of knowledge
Observational Study
Copyright ©The Author(s) 2025.
Artif Intell Gastroenterol. Nov 8, 2025; 6(3): 107528
Published online Nov 8, 2025. doi: 10.35712/aig.v6.i3.107528
Table 1 Basic characteristics of patients
Variable
Total (n = 60)
Age (years), median (interquartile range)61.5 (20-76)
Age
< 30 years4 (6.7)
30-39 years4 (6.7)
40-49 years6 (10.0)
50-59 years13 (21.7)
60-69 years23 (38.3)
> 70 years10 (16.7)
Gender
Female30 (50.0)
Male30 (50.0)
Ethnicity
Javanese28 (46.7)
Sundanese5 (8.3)
Minangkabau2 (3.3)
Batak9 (15.0)
Chinese9 (15.0)
Other7 (11.7)
Obesity
Yes12 (20.0)
No48 (80.0)
Inflammatory bowel disease
Yes18 (30.0)
No42 (70.0)
Diabetes mellitus
Yes12 (20.0)
No48 (80.0)
Family history of polyps
Yes8 (13.3)
No52 (86.7)
Family history of colorectal cancer
Yes6 (10.0)
No54 (90.0)
Table 2 Basic characteristics of patients based on the size, location, and morphology of polyps
Variable
Total (n = 100)
Polyp size
1-5 mm56 (56)
6-9 mm11 (11)
≥ 10 mm33 (33)
Polyp location
Rectosigmoid polyp51 (51)
Descending colon polyp17
Transverse colon polyp8 (8)
Ascending colon polyp19 (19)
Cecum polyp5
Morfologi polyp
Sessile polyp75
Semipedunculated polyp9 (9)
Pedunculated polyp16 (16)
Flat polyp0 (0)
Other polyp0 (0)
Table 3 Comparison of artificial intelligence (computer-assisted diagnosis eye function) findings with histopathology results
Examination resultHistopathology

Hyperplastic
Neoplastic
Total
Computer-assisted diagnosis eyeHyperplastic57764
Neoplastic152136
Total7228100
Sensitivity (%)79.17
Specificity (%)75.00
Positive predictive value (%)89.06
Negative predictive value (%)58.33
Accuracy78.00
Table 4 Comparison of artificial intelligence (computer-assisted diagnosis eye function) findings with histopathology results in diminutive polyps
Examination resultHistopathology

Hyperplastic
Neoplastic
Total
Computer-assisted diagnosis eyeHyperplastic44246
Neoplastic7310
Total51556
Sensitivity (%)86.27
Specificity (%)60.00
Positive predictive value (%)95.65
Negative predictive value (%)30.00
Accuracy83.93
Table 5 Comparison of artificial intelligence (computer-assisted diagnosis eye function) findings with histopathology results in non-diminutive polyps
Examination resultHistopathology

Hyperplastic
Neoplastic
Total
Computer-assisted diagnosis eyeHyperplastic13518
Neoplastic81826
Total212344
Sensitivity (%)61.90
Specificity (%)78.26
Positive predictive value (%)72.22
Negative predictive value (%)69.23
Accuracy70.45
Table 6 Comparison of artificial intelligence (computer-assisted diagnosis eye function) findings with histopathology results in left-sided colon polyps
Examination resultHistopathology

Hyperplastic
Neoplastic
Total
Computer-assisted diagnosis eyeHyperplastic41344
Neoplastic111324
Total521668
Sensitivity (%)78.85
Specificity (%)81.25
Positive predictive value (%)93.18
Negative predictive value (%)54.17
Accuracy79.41
Table 7 Comparison of artificial intelligence (computer-assisted diagnosis eye function) findings with histopathology results in right-sided colon polyps
Examination resultHistopathology

Hyperplastic
Neoplastic
Total
Computer-assisted diagnosis eyeHyperplastic16420
Neoplastic4812
Total201232
Sensitivity (%)80.00
Specificity (%)66.67
Positive predictive value (%)80.00
Negative predictive value (%)66.67
Accuracy75.00
Table 8 Comparison of artificial intelligence (computer-assisted diagnosis eye function) findings with histopathology results in sessile polyps
Examination resultHistopathology

Hyperplastic
Neoplastic
Total
Computer-assisted diagnosis eyeHyperplastic53558
Neoplastic12517
Total651075
Sensitivity (%)81.54
Specificity (%)50.00
Positive predictive value (%)91.38
Negative predictive value (%)29.41
Accuracy77.33
Table 9 Comparison of artificial intelligence (computer-assisted diagnosis eye function) findings with histopathology results in non-sessile polyps
Examination resultHistopathology

Hyperplastic
Neoplastic
Total
Computer-assisted diagnosis eyeHyperplastic426
Neoplastic31619
Total71825
Sensitivity (%)57.14
Specificity (%)88.89
Positive predictive value (%)66.67
Negative predictive value (%)84.21
Accuracy80.00