Minireviews
Copyright ©The Author(s) 2025.
Artif Intell Gastroenterol. Jun 8, 2025; 6(1): 107193
Published online Jun 8, 2025. doi: 10.35712/aig.v6.i1.107193
Table 1 Key studies on artificial intelligence in alcohol-related liver disease prediction
Study focus
Methodology
Key findings
Citation
Multi-omics integrationMachine learning with transcriptomics and proteomics data90% accuracy for liver tissue classification, 89% for PBMCs(Listopad et al[4], 2024) (Listopad et al[3], 2022)
Gut microbiota-based diagnosisSupervised ML algorithms with feature reduction techniquesAUCs > 0.90 for ALD and NAFLD diagnosis(Park et al[5], 2024)
Gradient boosting for mortalityGradient boosting with laboratory and microbiome dataAUC of 0.87 for 30-day mortality prediction, outperforming MELD score(Gao et al[2], 2022)
Proteomic panels for fibrosisMachine learning on liver and plasma proteomics dataAUC of 0.90 for detecting F2 or greater fibrosis(Mezzacappa and Bhat[8], 2023)
Bayesian optimization for classifiersBayesian optimization of Random Forest and XGBoost81.06% accuracy for liver disease prediction(Kumar and Rani[7], 2024)
Extra Tree for early detectionExtra Tree algorithm with oversampling techniques92% accuracy for early liver disease detection(Lima et al[10], 2024)
Table 2 Comparative analysis of artificial intelligence models in alcohol-related liver disease prediction
AI model
Methodology
Performance metrics
Key limitations
Citation
Gradient BoostingMICE imputation, SMOTE, feature selectionAUC = 0.87 (30-day mortality prediction)Small sample size, Lack of external validation, missing dataGao et al[2], 2022
Stacked Ensemble (XGBoost + Logistic Regression)Multi-omics + clinical featuresAccuracy = 93.86% (alcoholic cirrhosis prediction)Lack of external validationVinutha et al[6], 2022
Random Forest/XGBoostBayesian optimizationAccuracy = 81.06% (Random Forest), 79.85% (XGBoost)Data heterogeneityKumar and Rani[7], 2024
Extra Tree with OversamplingLiver stiffness + clinical dataAccuracy = 92% (early ARLD detection)Requires high-resolution imagingLima et al[10], 2024