Minireviews
Copyright ©The Author(s) 2020.
Artif Intell Gastroenterol. Nov 28, 2020; 1(4): 71-85
Published online Nov 28, 2020. doi: 10.35712/aig.v1.i4.71
Table 1 Previous studies on upper endoscopy of gastric cancer using artificial intelligence
Ref.
Targets
Sample sizes
Inputs
Tasks
Analysis method
Diagnostic performance
Yoon et al[28] GC (ESD/surgery)800 casesGC/non-GC images in close-up and distant viewsDetection and invasion depth predictionCNNAUC: detection, 0.981; depth, 0.851
Zhu et al[29] GC 993 imagesGC imagesDiagnosis of invasion depthCNNSensitivity: 76.4%, PPV: 89.6%
Li et al[30] GC and healthy 386 GC and 1702 NC imagesNBI imagesDiagnosis of GCCNNSensitivity: 91.1%, PPV: 90.6%
Hirasawa et al[31] GC13584 training and 2296 test imagesGC imagesDiagnosis of GCCNNSensitivity: 92.2%, PPV: 30.6%
Ishioka et al[32] EGC 62 casesReal-time imagesDetectionCNNDetection rate: 94.1%
Luo et al[33] GC 1036496 imagesGC imagesDetectionCNNPPV: 0.814, NPV:0.978
Horiuchi et al[34] GC and gastritis 1492 GC and 1078 gastritis imagesNBI imagesDetectionCNNSensitivity: 95.4%, PPV: 82.3%
Table 2 Previous studies on colonoscopy using artificial intelligence
Ref.
Targets
Sample sizes
Inputs
Tasks
Analysis method
Diagnostic performance
Akbari et al[35] Screening endoscopy300 polyp imagesPolyp imagesAuto segmentation of polypsCNNAccuracy: 0.977, Sensitivity: 74.8%
Jin et al[36] Screening endoscopyTraining: 2150 polyps, test: 300 polypsNBI imagesDifferentiation of adenoma and hyperplastic polypsCNNThe model reduced the time of endoscopy and increased accuracy by novice endoscopists
Urban et al[37]Screening endoscopy8641 polyp images and 20 colonoscopy videosPolyp imagesDetection of polypsCNNAUC: 0.991, Accuracy: 96.4%
Yamada et al[38] Screening endoscopy4840 images, 77 colonoscopy videosReal-time imagesDifferentiation of the early signs of CRCCNNSensitivity: 97.3%, Specificity: 99.0%
Table 3 Previous studies on the pathology of gastric cancer using artificial intelligence
Ref.
Targets
Sample size
Input
Task
Analysis method
Diagnostic performance
Qu et al[39] GC15000 imagesPathological imagesEvaluation of stepwise methodsCNNAUC: 0828-0.920
Yoshida et al[40] GC 3062 biopsy samplesPathological images stained by H&E Automatic segmentation, diagnosis of carcinomaCNNSensitivity: 89.5%, specificity: 50.7%
Mori et al[41] GC (surgery)516 images from 10 GC casesPathological images stained by H&E Diagnosis of invasion depth in signet cell carcinomaCNNSensitivity: 90%, Specificity: 81%
Jiang et al[42] GC (surgery)786 casesIHC (CD3, CD8, CD45RO, CD45RA, CD57, CD68, CD66b, and CD34)Prediction of survivalSVMThe immunomarker SVM was useful for predicting survival
Table 4 Previous studies on the pathology of colorectal cancer using artificial intelligence
Ref.
Targets
Sample size
Input
Task
Analysis method
Diagnostic performance
Van Eycke et al[43] CRC H&E staining, IHC imageSegmentation of the glandular epitheliumTMA, CNNF1 value: 0,912
Graham et al[44] CRC H&E stainingDifferentiation of intratumor glands CNNF1 values: 0.90
Abdelsamea et al[45] CRC 333 samplesH&E staining, IHC (CD3)Differentiation of the tumor epitheliumTMA, CNNAccuracy: 0.93-0.94
Yan et al[46] CRCH&E stainingTumor classification,segmentation of tumors, CNNAccuracy: Classification, 97.8%; segmentation, 84%
Haj-Hassan et al[47] CRC Multispectral imagesSegmentation of carcinomaCNNAccuracy: 99.1%
Rathore et al[48] CRC Biopsy samples H&E stainingDetection and grading of tumorsTexture and morphology patterns, SVMRecognition rate: Detection, 95.4%; grading; 93.4%
Yang et al[49] CRC 180 samplesH&E stainingDiagnosis of benign tumors, neoplasms, and carcinomaSVM, histogram, texture AUC: 0.852
Chaddad et al[50] CRC 30 casesH&E stainingDiagnosis of carcinoma, adenoma, and benign tumorsAutomatic segmentation, textureAccuracy: 98.9%
Yoshida et al[51] CRC 1328 samplesH&E stainingDiagnosis of benign tumors, neoplasms, and carcinomaCNN, automatic analysis of structureUndetected rate of carcinoma and adenoma: 0-9.3% and 0-9.9%, respectively
Takamatsu et al[52] CRC surgery397 samplesH&E stainingPrediction of lymph node metastasisLR, shape analysisAUC: 0.94
Weis et al[53] CRC 596 casesIHC (AE1/AE3)Automatic evaluation of tumor buddingTMA, CNNCorrelation; R2 value: 0.86
Bychkov et al[54]CRC surgery420 casesH&E stainingPrediction of survivalTMA, CNNGood biomarker for predicting survival
Kather et al[55] CRC 973 slidesH&E stainingPrediction of survivalStromal pattern, CNNGood biomarker for predicting survival
Reichling et al[56] CRC surgery1018 casesHE, IHC (CD3, CD8)Prediction of survivalRF, monogramGood biomarker for predicting survival
Table 5 Previous studies on the radiological diagnosis of gastric cancer using radiomics or artificial intelligence
Ref.
Targets
Sample size
Input
Task
Analysis method
Diagnostic performance
Li et al[57] GC, radical surgery181 casesPrimary tumor, preoperative CTPrediction of survivalManual segmentation, radiomics, NomogramsThe TNM stage and radiomics signature were good biomarkers
Zhang et al[58] GC, radical surgery669 cases Primary tumor, preoperative CTPredication of early recurrenceManual segmentation, radiomics, NomogramsAUC: 0.806-0.831
Li et al[59] GC, radical surgery204 casesPrimary tumor, pre-operative dual-energy CTPre-operative diagnosis of LNMManual segmentation, radiomics, NomogramAUC; 0.82--.84
Li et al[60] GC, radical surgery554 casesPrimary tumor, preoperative CTPrediction of a pathological status, survivalSemi-automatic segmentation, radiomicsAUC for prediction of the pathological status: 0.77, the TNM stage and radiomics signature were good biomarkers
Wang et al[61] GC, radical surgery187 casesPrimary tumor, preoperative dynamic CTPre-operative prediction of intestinal-type GCManual segmentation, radiomics, NomogramsAUC: 0.904
Jiang et al[62] GC, surgery214 casesPrimary tumor, preoperative PET-CTPrediction of survivalManual segmentation, radiomics, NomogramsC-index: DFS, 0.800; OS, 0.786
Chen et al[63] GC, surgery146 casesPrimary tumor, preoperative MRIPre-operative diagnosis of lymph node metastasisManual segmentation, radiomics analysisAUC: 0.878
Gao et al[64] GC, surgery627 cases, 17340 imagesLymph nodes, preoperative CTPre-operative diagnosis of lymph node metastasisManual segmentation, deep learningAUC: 0.9541.
Huang et al[65] GC, surgeryPrimary tumor, preoperative CTPre-operative diagnosis of peritoneal metastasisManual segmentation, CNNOngoing, retrospective cross-sectional study
Table 6 Previous studies on the radiological diagnosis of colorectal cancer using radiomics or artificial intelligence
Ref.
Targets
Sample size
Input
Task
Analysis method
Diagnostic performance
Trebeschi et al[66] LRC140 casesPrimary tumor, MRIAutomatic detection, segmentation CNNDSC: 0.68-0.70, AUC: 0.99
Wang et al[67] LRC568 casesPrimary tumor, MRIAutomatic segmentationCNNDSC: 0.82
Wang et al[68] LRC93 casesPrimary tumor, MRIAutomatic segmentationDeep learning DSC: 0.74
Men et al[69] LRC278 casesPrimary tumor, CTAutomatic segmentationCNNDSC: 0.87
Shayesteh et al[70] LRC, NCRT followed by surgery98 casesPrimary tumor, pre-treatment MRIPrediction of CRT responsesManual segmentation, radiomics, machine learningAUC: 0.90
Shi et al[71] LRC, NCRT followed by surgery45 casesPrimary tumor, pre-treatment MRI, mid-radiation MRIPrediction of CRT responsesManual segmentation, CNNAUC: CR, 0.83; good response, 0.93
Ferrari et al[72] LRC, NCRT followed by surgery55 casesPrimary tumor, MRI before, during and after CRTPrediction of CRT responsesManual segmentation, radiomics, RFAUC: CR: 0.86, non-response: 0.83
Bibault et al[73] LRC, NCRT followed by surgery95 casesPrimary tumor, pre-operative CTPrediction of CRT responsesManual segmentation, radiomics, CNN80% accuracy
Dercle et al[74] CRC, FOLFILI with/without cetuximab667 casesMetastatic tumor, CTPrediction of tumor sensitivity to chemotherapyManual segmentation, radiomics, machine learningAUC: 0.72-0.80
Ding et al[75] LRC, radical surgery414 casesLymph nodes, pre-operative MRIPre-operative diagnosis of lymph node metastasisManual segmentation, CNNAI system > radiologist
Taguchi et al[76] CRC40 casesPrimary tumor, CTPrediction of the KRAS statusManual segmentation, radiomicsAUC: 0.82