Minireviews
Copyright
©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.
Artif Intell Gastroenterol. Nov 28, 2020; 1(4): 71-85
Published online Nov 28, 2020. doi: 10.35712/aig.v1.i4.71
Table 1 Previous studies on upper endoscopy of gastric cancer using artificial intelligence
Ref. Targets Sample sizes Inputs Tasks Analysis method Diagnostic performance Yoon et al [28 ] GC (ESD/surgery) 800 cases GC/non-GC images in close-up and distant views Detection and invasion depth prediction CNN AUC: detection, 0.981; depth, 0.851 Zhu et al [29 ] GC 993 images GC images Diagnosis of invasion depth CNN Sensitivity: 76.4%, PPV: 89.6% Li et al [30 ] GC and healthy 386 GC and 1702 NC images NBI images Diagnosis of GC CNN Sensitivity: 91.1%, PPV: 90.6% Hirasawa et al [31 ] GC 13584 training and 2296 test images GC images Diagnosis of GC CNN Sensitivity: 92.2%, PPV: 30.6% Ishioka et al [32 ] EGC 62 cases Real-time images Detection CNN Detection rate: 94.1% Luo et al [33 ] GC 1036496 images GC images Detection CNN PPV: 0.814, NPV:0.978 Horiuchi et al [34 ] GC and gastritis 1492 GC and 1078 gastritis images NBI images Detection CNN Sensitivity: 95.4%, PPV: 82.3%
Table 2 Previous studies on colonoscopy using artificial intelligence
Ref. Targets Sample sizes Inputs Tasks Analysis method Diagnostic performance Akbari et al [35 ] Screening endoscopy 300 polyp images Polyp images Auto segmentation of polyps CNN Accuracy: 0.977, Sensitivity: 74.8% Jin et al [36 ] Screening endoscopy Training: 2150 polyps, test: 300 polyps NBI images Differentiation of adenoma and hyperplastic polyps CNN The model reduced the time of endoscopy and increased accuracy by novice endoscopists Urban et al [37 ] Screening endoscopy 8641 polyp images and 20 colonoscopy videos Polyp images Detection of polyps CNN AUC: 0.991, Accuracy: 96.4% Yamada et al [38 ] Screening endoscopy 4840 images, 77 colonoscopy videos Real-time images Differentiation of the early signs of CRC CNN Sensitivity: 97.3%, Specificity: 99.0%
Table 3 Previous studies on the pathology of gastric cancer using artificial intelligence
Ref. Targets Sample size Input Task Analysis method Diagnostic performance Qu et al [39 ] GC 15000 images Pathological images Evaluation of stepwise methods CNN AUC: 0828-0.920 Yoshida et al [40 ] GC 3062 biopsy samples Pathological images stained by H&E Automatic segmentation, diagnosis of carcinoma CNN Sensitivity: 89.5%, specificity: 50.7% Mori et al [41 ] GC (surgery) 516 images from 10 GC cases Pathological images stained by H&E Diagnosis of invasion depth in signet cell carcinoma CNN Sensitivity: 90%, Specificity: 81% Jiang et al [42 ] GC (surgery) 786 cases IHC (CD3, CD8, CD45RO, CD45RA, CD57, CD68, CD66b, and CD34) Prediction of survival SVM The immunomarker SVM was useful for predicting survival
Table 4 Previous studies on the pathology of colorectal cancer using artificial intelligence
Ref. Targets Sample size Input Task Analysis method Diagnostic performance Van Eycke et al [43 ] CRC H&E staining, IHC image Segmentation of the glandular epithelium TMA, CNN F1 value: 0,912 Graham et al [44 ] CRC H&E staining Differentiation of intratumor glands CNN F1 values: 0.90 Abdelsamea et al [45 ] CRC 333 samples H&E staining, IHC (CD3) Differentiation of the tumor epithelium TMA, CNN Accuracy: 0.93-0.94 Yan et al [46 ] CRC H&E staining Tumor classification,segmentation of tumors, CNN Accuracy: Classification, 97.8%; segmentation, 84% Haj-Hassan et al [47 ] CRC Multispectral images Segmentation of carcinoma CNN Accuracy: 99.1% Rathore et al [48 ] CRC Biopsy samples H&E staining Detection and grading of tumors Texture and morphology patterns, SVM Recognition rate: Detection, 95.4%; grading; 93.4% Yang et al [49 ] CRC 180 samples H&E staining Diagnosis of benign tumors, neoplasms, and carcinoma SVM, histogram, texture AUC: 0.852 Chaddad et al [50 ] CRC 30 cases H&E staining Diagnosis of carcinoma, adenoma, and benign tumors Automatic segmentation, texture Accuracy: 98.9% Yoshida et al [51 ] CRC 1328 samples H&E staining Diagnosis of benign tumors, neoplasms, and carcinoma CNN, automatic analysis of structure Undetected rate of carcinoma and adenoma: 0-9.3% and 0-9.9%, respectively Takamatsu et al [52 ] CRC surgery 397 samples H&E staining Prediction of lymph node metastasis LR, shape analysis AUC: 0.94 Weis et al [53 ] CRC 596 cases IHC (AE1/AE3) Automatic evaluation of tumor budding TMA, CNN Correlation; R2 value: 0.86 Bychkov et al [54 ] CRC surgery 420 cases H&E staining Prediction of survival TMA, CNN Good biomarker for predicting survival Kather et al [55 ] CRC 973 slides H&E staining Prediction of survival Stromal pattern, CNN Good biomarker for predicting survival Reichling et al [56 ] CRC surgery 1018 cases HE, IHC (CD3, CD8) Prediction of survival RF, monogram Good biomarker for predicting survival
Table 5 Previous studies on the radiological diagnosis of gastric cancer using radiomics or artificial intelligence
Ref. Targets Sample size Input Task Analysis method Diagnostic performance Li et al [57 ] GC, radical surgery 181 cases Primary tumor, preoperative CT Prediction of survival Manual segmentation, radiomics, Nomograms The TNM stage and radiomics signature were good biomarkers Zhang et al [58 ] GC, radical surgery 669 cases Primary tumor, preoperative CT Predication of early recurrence Manual segmentation, radiomics, Nomograms AUC: 0.806-0.831 Li et al [59 ] GC, radical surgery 204 cases Primary tumor, pre-operative dual-energy CT Pre-operative diagnosis of LNM Manual segmentation, radiomics, Nomogram AUC; 0.82--.84 Li et al [60 ] GC, radical surgery 554 cases Primary tumor, preoperative CT Prediction of a pathological status, survival Semi-automatic segmentation, radiomics AUC for prediction of the pathological status: 0.77, the TNM stage and radiomics signature were good biomarkers Wang et al [61 ] GC, radical surgery 187 cases Primary tumor, preoperative dynamic CT Pre-operative prediction of intestinal-type GC Manual segmentation, radiomics, Nomograms AUC: 0.904 Jiang et al [62 ] GC, surgery 214 cases Primary tumor, preoperative PET-CT Prediction of survival Manual segmentation, radiomics, Nomograms C-index: DFS, 0.800; OS, 0.786 Chen et al [63 ] GC, surgery 146 cases Primary tumor, preoperative MRI Pre-operative diagnosis of lymph node metastasis Manual segmentation, radiomics analysis AUC: 0.878 Gao et al [64 ] GC, surgery 627 cases, 17340 images Lymph nodes, preoperative CT Pre-operative diagnosis of lymph node metastasis Manual segmentation, deep learning AUC: 0.9541. Huang et al [65 ] GC, surgery Primary tumor, preoperative CT Pre-operative diagnosis of peritoneal metastasis Manual segmentation, CNN Ongoing, retrospective cross-sectional study
Table 6 Previous studies on the radiological diagnosis of colorectal cancer using radiomics or artificial intelligence
Ref. Targets Sample size Input Task Analysis method Diagnostic performance Trebeschi et al [66 ] LRC 140 cases Primary tumor, MRI Automatic detection, segmentation CNN DSC: 0.68-0.70, AUC: 0.99 Wang et al [67 ] LRC 568 cases Primary tumor, MRI Automatic segmentation CNN DSC: 0.82 Wang et al [68 ] LRC 93 cases Primary tumor, MRI Automatic segmentation Deep learning DSC: 0.74 Men et al [69 ] LRC 278 cases Primary tumor, CT Automatic segmentation CNN DSC: 0.87 Shayesteh et al [70 ] LRC, NCRT followed by surgery 98 cases Primary tumor, pre-treatment MRI Prediction of CRT responses Manual segmentation, radiomics, machine learning AUC: 0.90 Shi et al [71 ] LRC, NCRT followed by surgery 45 cases Primary tumor, pre-treatment MRI, mid-radiation MRI Prediction of CRT responses Manual segmentation, CNN AUC: CR, 0.83; good response, 0.93 Ferrari et al [72 ] LRC, NCRT followed by surgery 55 cases Primary tumor, MRI before, during and after CRT Prediction of CRT responses Manual segmentation, radiomics, RF AUC: CR: 0.86, non-response: 0.83 Bibault et al [73 ] LRC, NCRT followed by surgery 95 cases Primary tumor, pre-operative CT Prediction of CRT responses Manual segmentation, radiomics, CNN 80% accuracy Dercle et al [74 ] CRC, FOLFILI with/without cetuximab 667 cases Metastatic tumor, CT Prediction of tumor sensitivity to chemotherapy Manual segmentation, radiomics, machine learning AUC: 0.72-0.80 Ding et al [75 ] LRC, radical surgery 414 cases Lymph nodes, pre-operative MRI Pre-operative diagnosis of lymph node metastasis Manual segmentation, CNN AI system > radiologist Taguchi et al [76 ] CRC 40 cases Primary tumor, CT Prediction of the KRAS status Manual segmentation, radiomics AUC: 0.82