Copyright
©The Author(s) 2015.
World J Meta-Anal. Oct 26, 2015; 3(5): 215-224
Published online Oct 26, 2015. doi: 10.13105/wjma.v3.i5.215
Published online Oct 26, 2015. doi: 10.13105/wjma.v3.i5.215
Table 1 Distributions of the continuous endpoint for treatment and control groups
| Scenario | Endpoint distribution | |
| Treatment group | Control group | |
| Normal | Mean = 5 and SD = 2 | Mean = 7 and SD = 2 |
| Standard normal | Mean = 0 and SD = 1 | Mean = 0 and SD = 1 |
| Gamma | Alpha = 2 and beta = 5 | Alpha = 2 and beta = 7 |
| Exponential | Mean = 5 and lambda = 0.2 | Mean = 7 and lambda = 0.14 |
| Bimodal | 50% Normal distribution with mean = 5 and SD = 2 and 50% standard normal distribution | 50% Normal distribution with mean = 7 and SD = 2 and 50% standard normal distribution |
| ICU stay | Real-life data | Real-life data |
| Hospital stay | Real-life data | Real-life data |
Table 2 Example of SAS code to simulate a meta-analysis on 15 datasets with 15 records generated from a Gamma distribution (alpha = 2 and beta = 5 vs alpha = 2 and beta = 7 for the treatment and control groups, respectively)
| * q is the assigned library; |
| **************************************************; |
| * SIMULATIONS; |
| **************************************************; |
| %let s = gamma; |
| %let ndset = 15; |
| * Simulation of n = 15 dataset using the Gamma distributions; |
| %macro simul; |
| %do q = 1 %to &ndset; |
| %let seed = %sysevalf(1234567 + &q); |
| %let num_i = %sysevalf(&ndset); |
| %let v = %sysevalf(0 + &q); |
| data s&q; |
| k = &q; |
| %do i = 1%to &num_i; |
| var1 = 5*rangam(&seed,2); |
| var2 = 7*rangam(&seed,2); |
| output; |
| %end; |
| run; |
| %end; |
| * Dataset combining; |
| data simul_&s; |
| set |
| %do w = 1%to &ndset; |
| s&w |
| %end; |
| ; |
| run; |
| %mend; |
| %simul; |
| * Descriptive statistics for each dataset; |
| ods trace on; |
| ods output summary = summary_&s; |
| proc means data = simul_&s mean std median q1 q3; |
| class k; |
| var var1 var2; |
| run; |
| ods trace off; |
| data summary_&s; |
| set summary_&s; |
| l1 = (var1_Median-var1_Q1)/0.6745; |
| l2 = (var2_Median-var2_Q1)/0.6745; |
| u1 = (var1_Q3-var1_Median)/0.6745; |
| u2 = (var2_Q3-var2_Median)/0.6745; |
| if l1 > u1 then MeSD_v1_cons=l1; else MeSD_v1_cons=u1; |
| if l2 > u2 then MeSD_v2_cons=l2; else MeSD_v2_cons=u2; |
| if l1 > u1 then MeSD_v1_prec=u1; else MeSD_v1_prec=l1; |
| if l2 > u2 then MeSD_v2_prec=u2; else MeSD_v2_prec=l2; |
| MeSD_v1_mean=(var1_Q3-var1_Q1)/1.349; |
| MeSD_v2_mean=(var2_Q3-var2_Q1)/1.349; |
| * Median difference; |
| MeD = var1_Median-var2_Median; |
| *1 conservative estimate of standard deviation; |
| a1sd = ((MeSD_v1_cons)**2)/NObs; |
| b1sd = ((MeSD_v2_cons)**2)/NObs; |
| MeSD_cons=sqrt(a1sd + b1sd); |
| *2 less conservative estimate of standard deviation; |
| a2sd = ((MeSD_v1_prec)**2)/NObs; |
| b2sd = ((MeSD_v2_prec)**2)/NObs; |
| MeSD_prec = sqrt(a2sd + b2sd); |
| *3 mean estimate of standard deviation; |
| a3sd = ((MeSD_v1_mean)**2)/NObs; |
| b3sd = ((MeSD_v2_mean)**2)/NObs; |
| MeSD_mean = sqrt(a3sd + b3sd); |
| *4 Interquartile range; |
| a4sd = ((var1_Q3-var1_Q1)**2)/NObs; |
| b4sd = ((var2_Q3-var2_Q1)**2)/NObs; |
| MeSD_iqr = sqrt(a4sd + b4sd); |
| * Mean difference and pooled standard deviation; |
| MD = var1_Mean-var2_Mean; |
| asd = ((var1_StdDev)**2)/NObs; |
| bsd = ((var2_StdDev)**2)/NObs; |
| SD = sqrt(asd + bsd); |
| drop l1 l2 u1 u2 asd bsd a1sd b1sd a2sd b2sd a3sd b3sd a4sd b4sd; |
| run; |
| *************************; |
| * Meta-analyses; |
| data sum_&s; |
| set summary_&s; |
| keep k NObs MeD MeSD_cons MeSD_prec MeSD_mean MeSD_iqr MD SD qq; |
| run; |
| *1 Median and conservative estimate of standard deviation; |
| data meta_&s.1; |
| set sum_&s; |
| model = "Conservative SD"; |
| MDz = MeD; |
| SDz = MeSD_cons; |
| w = 1/(SDz**2); |
| MDw = MDz*w; |
| keep model k NObs MDz SDz w MDw; |
| run; |
| *2 Median and less conservative estimate of standard deviation; |
| data meta_&s.2; |
| set sum_&s; |
| model = "Less Conservative SD"; |
| MDz = MeD; |
| SDz = MeSD_prec; |
| w = 1/(SDz**2); |
| MDw = MDz*w; |
| keep model k NObs MDz SDz w MDw; |
| run; |
| *3 Median and mean estimate of standard deviation; |
| data meta_&s.3; |
| set sum_&s; |
| model = "Mean SD"; |
| MDz = MeD; |
| SDz = MeSD_mean; |
| w = 1/(SDz**2); |
| MDw=MDz*w; |
| keep model k NObs MDz SDz w MDw; |
| run; |
| *4 Median and interquartile range; |
| data meta_&s.4; |
| set sum_&s; |
| model = "IQR"; |
| MDz = MeD; |
| SDz = MeSD_iqr; |
| w = 1/(SDz**2); |
| MDw = MDz*w; |
| keep model k NObs MDz SDz w MDw; |
| run; |
| *Mean and standard deviation (reference); |
| data meta_&s.5; |
| set sum_&s; |
| model = "Reference"; |
| MDz = MD; |
| SDz = SD; |
| w = 1/(SDz**2); |
| MDw = MDz*w; |
| keep model k NObs MDz SDz w MDw; |
| run; |
| proc format; |
| value model |
| 1 = "conservative SD" |
| 2 = "Less Conservative SD " |
| 3 = "Mean SD " |
| 4 = "IQR" |
| 5 = "Reference" |
| ; |
| run; |
| *** Fixed effect model meta-analysis - Inverse of Variance method; |
| %macro meta_iv; |
| %do i = 1%to 5; |
| ods output Summary = somme&i; |
| proc means data = meta_&s&i sum; |
| var MDw w; |
| run; |
| data somme&i; |
| set somme&i; |
| model = &i; |
| format model model.; |
| theta = MDw_Sum/w_Sum; |
| se_theta = 1/(sqrt(w_sum)); |
| lower = theta - (se_theta*1.96); |
| upper = theta + (se_theta*1.96); |
| mtheta = sqrt(theta**2); |
| CV = se_theta/mtheta; |
| keep model theta se_theta lower upper cv; |
| run; |
| %end; |
| data aaMeta_&s; |
| set |
| %do w = 1% to 5; |
| somme&w |
| %end; |
| ; |
| run; |
| title "distr = &s - k = &ndset"; |
| proc print; run; |
| %mend; |
| %meta_iv; |
Table 3 Method for imputing the study-specific standard deviation
| Methodnumber | Method name | Mean imputation | Standard Deviation imputation1 |
| 0 | Reference | Mean | SD |
| 1 | Conservative SD | Median | max[(3rd quartile - median)/0.6745; (median - 1st quartile)/0.6745] |
| 2 | Less Conservative SD | Median | min[(3rd quartile - median)/0.6745; (median - 1st quartile)/0.6745] |
| 3 | Mean SD | Median | (3rd quartile - 1st quartile)/(2 × 0.6745) |
| 4 | IQR | Median | (3rd quartile - 1st quartile) |
Table 4 Comparison of results obtained from the four methods of approximation of study-specific means and standard deviations in a meta-analysis of a continuous outcome
Table 5 Absolute differences between standardized estimates, θstandijk, calculated by means of one of the four methods (conservative SD, less conservative SD, mean SD and interquartile range), and the reference
| Distributionscenario | Dataset | Conservative SD | Less Conservative SD | Mean SD | IQR |
| Normal | 15 | -0.310 | 1.274 | 0.149 | 0.110 |
| Normal | 30 | 0.029 | -1.483 | -0.109 | -0.081 |
| Normal | 50 | -0.434 | -0.946 | -0.599 | -0.444 |
| Normal | 100 | 0.340 | 0.095 | 0.243 | 0.180 |
| Normal | 500 | -0.336 | -0.357 | -0.353 | -0.261 |
| Normal | 1000 | 0.754 | 0.989 | 0.860 | 0.638 |
| No. of times of beginning first in the ranking1 | 2 | 1 | 0 | 3 | |
| Standard normal | 15 | -0.335 | 1.072 | 0.062 | 0.046 |
| Standard normal | 30 | -0.101 | -1.710 | -0.290 | -0.215 |
| Standard normal | 50 | -0.535 | -1.013 | -0.690 | -0.511 |
| Standard normal | 100 | 0.502 | 0.281 | 0.416 | 0.308 |
| Standard normal | 500 | -0.306 | -0.314 | -0.317 | -0.235 |
| Standard Normal | 1000 | 0.814 | 1.054 | 0.923 | 0.684 |
| No. of times of beginning first in the ranking1 | 1 | 1 | 0 | 4 | |
| Gamma | 15 | -0.283 | 0.054 | -0.119 | -0.088 |
| Gamma | 30 | 1.441 | 2.229 | 1.846 | 1.368 |
| Gamma | 50 | 1.795 | 2.929 | 2.218 | 1.644 |
| Gamma | 100 | 4.915 | 8.193 | 6.070 | 4.500 |
| Gamma | 500 | 24.081 | 35.799 | 28.753 | 21.314 |
| Gamma | 1000 | 49.089 | 71.072 | 58.012 | 43.002 |
| No. of times of beginning first in the ranking1 | 0 | 1 | 0 | 5 | |
| Exponential | 15 | -0.150 | -0.163 | -0.157 | -0.116 |
| Exponential | 30 | 1.880 | 2.958 | 2.301 | 1.706 |
| Exponential | 50 | 2.948 | 4.975 | 3.707 | 2.748 |
| Exponential | 100 | 10.213 | 19.490 | 13.493 | 10.002 |
| Exponential | 500 | 39.546 | 74.955 | 51.913 | 38.481 |
| Exponential | 1000 | 80.605 | 157.083 | 106.593 | 79.016 |
| No. of times of beginning first in the ranking1 | 0 | 0 | 0 | 6 | |
| Bimodal | 15 | 1.142 | 4.114 | 1.751 | 1.298 |
| Bimodal | 30 | 0.079 | 0.356 | 0.096 | 0.071 |
| Bimodal | 50 | 0.545 | 3.051 | 1.110 | 0.823 |
| Bimodal | 100 | 2.405 | 6.849 | 3.650 | 2.706 |
| Bimodal | 500 | 19.156 | 41.495 | 26.212 | 19.431 |
| Bimodal | 1000 | 38.825 | 81.301 | 52.527 | 38.938 |
| No. of times of beginning first in the ranking1 | 5 | 0 | 0 | 1 | |
| ICU stay | 15 | 0.076 | -2.816 | 2.667 | 1.977 |
| ICU stay | 30 | -3.011 | -6.341 | -4.201 | -3.114 |
| ICU stay | 50 | -1.361 | -3.162 | -2.163 | -1.603 |
| ICU stay | 100 | -0.58 | -2.205 | 1.393 | 1.032 |
| ICU stay | 500 | -6.218 | -21.788 | -6.462 | -4.790 |
| ICU stay | 1000 | 3.162 | -5.020 | 6.801 | 5.042 |
| No. of times of beginning first in the ranking1 | 5 | 0 | 0 | 1 | |
| Hospital stay | 15 | 1.437 | 8.948 | 2.777 | 2.058 |
| Hospital stay | 30 | 2.603 | -1.088 | 2.595 | 1.924 |
| Hospital stay | 50 | 0.297 | -0.839 | -0.055 | -0.041 |
| Hospital stay | 100 | -4.674 | -13.063 | -6.734 | -4.992 |
| Hospital stay | 500 | -29.239 | -55.703 | -37.170 | -27.554 |
| Hospital stay | 1000 | -52.720 | -85.673 | -63.453 | -47.038 |
| No. of times of beginning first in the ranking1 | 2 | 1 | 0 | 3 | |
| 1st quartile | 0.337 | 1.023 | 0.368 | 0.273 | |
| Median | 1.399 | 2.944 | 2.190 | 1.624 | |
| 3rd quartile | 4.855 | 12.034 | 6.666 | 4.942 | |
| Total number of times of beginning first in the ranking1 | 15 | 4 | 0 | 23 |
Table 6 Absolute and relative frequencies of occurrence of the four methods to approximate study-specific means and standard deviations in a meta-analysis of a continuous outcome n (%)
| No. of firstranking | No. of second ranking | No. of third ranking | No. of fourth ranking | |
| Conservative SD | 15 (35.7) | 20 (47.6) | 3 (7.1) | 4 (9.5) |
| Less Conservative SD | 4 (9.5) | 1 (2.4) | 1 (2.4) | 36 (85.7) |
| Mean SD | 0 | 3 (7.1) | 37 (88.1) | 2 (4.8) |
| IQR | 23 (54.8) | 18 (42.9) | 1 (2.4) | 0 |
- Citation: Greco T, Biondi-Zoccai G, Gemma M, Guérin C, Zangrillo A, Landoni G. How to impute study-specific standard deviations in meta-analyses of skewed continuous endpoints? World J Meta-Anal 2015; 3(5): 215-224
- URL: https://www.wjgnet.com/2308-3840/full/v3/i5/215.htm
- DOI: https://dx.doi.org/10.13105/wjma.v3.i5.215
