BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Alkhawaldeh IM, Albalkhi I, Naswhan AJ. Challenges and limitations of synthetic minority oversampling techniques in machine learning. World J Methodol 2023; 13(5): 373-378 [PMID: 38229946 DOI: 10.5662/wjm.v13.i5.373]
URL: https://www.wjgnet.com/2222-0682/full/v13/i5/373.htm
Number Citing Articles
1
Zahra Mohammadi-Pirouz, Karimollah Hajian-Tilaki, Mahmoud Sadeghi Haddat-Zavareh, Abazar Amoozadeh, Shabnam Bahrami. Development of decision tree classification algorithms in predicting mortality of COVID-19 patientsInternational Journal of Emergency Medicine 2024; 17(1) doi: 10.1186/s12245-024-00681-7
2
Siyu Chen, Jinwen Zheng, Jinying Li. The Impact of Sample Size after Sampling on the Accuracy of Machine Learning Models2024 International Conference on Computers, Information Processing and Advanced Education (CIPAE) 2024; : 61 doi: 10.1109/CIPAE64326.2024.00017
3
Aditya Bhattacharya, Simone Stumpf, Katrien Verbert. Representation Debiasing of Generated Data Involving Domain ExpertsAdjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization 2024; : 516 doi: 10.1145/3631700.3664910
4
Seoyun Choi, Youngmi Lee, Minwoo Lee, Jung Hee Byon, Eun Jung Choi. Deep Learning-Based Recurrence Prediction in HER2-Low Breast Cancer: Comparison of MRI-Alone, Clinicopathologic-Alone, and Combined ModelsDiagnostics 2025; 15(15): 1895 doi: 10.3390/diagnostics15151895
5
Daqing Wu, Hangqi Cai, Tianhao Li. Food Safety Risk Prediction and Regulatory Policy Enlightenment Based on Machine LearningSystems 2025; 13(8): 715 doi: 10.3390/systems13080715
6
Elina Väyrynen, Otso Tirkkonen, Henna Tiensuu, Jaakko Suutala, Vuokko Anttonen, Marja-Liisa Laitala, Katri Kukkola, Saujanya Karki. A Machine Learning Algorithm With an Oversampling Technique in Limited Data Scenarios for the Prediction of Present and Future Restorative Treatment Need: Development and Validation StudyJMIR Medical Informatics 2025; 13: e75117 doi: 10.2196/75117
7
Trenton A. Line, Anoop S. Chinthala, Barnabas Obeng-Gyasi, Gordon Mao, Jamie L. Bradbury, Aditya Mittal, Jan Vargas, Ryan T. Kellogg, Enyinna Nwachuku, David O. Okonkwo, Matthew Pease. Comparison of Machine Learning Methods to Predict Early Mortality After Evacuation of Chronic Subdural HematomaNeurosurgery Practice 2025; 6(3) doi: 10.1227/neuprac.0000000000000151
8
Aysha Akther, Kazi Masudul Alam, Rameswar Debnath. Automatic detection of manipulated Bangla news: A new knowledge-driven approachNatural Language Processing Journal 2025; 11: 100155 doi: 10.1016/j.nlp.2025.100155
9
Ankit Halder, Sabyasachi Samantaray, Sahil Barbade, Aditya Gupta, Sanjeeva Srivastava. DrugProtAI: A machine learning–driven approach for predicting protein druggability through feature engineering and robust partition-based ensemble methodsBriefings in Bioinformatics 2025; 26(4) doi: 10.1093/bib/bbaf330
10
Siyi Yuan, Song Xu, Xiao Lu, Xiangyu Chen, Yao Wang, Renyi Bao, Yunbo Sun, Xiongjian Xiao, Longxiang Su, Yun Long, Linfeng Li, Huaiwu He. A privacy-preserving platform oriented medical healthcare and its application in identifying patients with candidemiaScientific Reports 2024; 14(1) doi: 10.1038/s41598-024-66596-8
11
Kaliprasanna Swain, Tan Kuan Tak, Kamal Upreti, Pravin R Kshirsagar, Sivaneasan Bala Krishnan, Ramesh Chandra Poonia, Sumya Ranjan Nayak, Mihir Narayan Mohanty. Enhancing Stroke Prediction Using LightGBM With SMOTE-ENN and Fine-Tuning: A Comprehensive AnalysisCureus Journal of Computer Science 2024;  doi: 10.7759/s44389-024-02268-y
12
Muhammad Kamran, Muhammad Maaz Rehan, Wasif Nisar, Muhammad Waqas Rehan. ARCADE—Adversarially Robust Cost-Sensitive Anomaly Detection in Blockchain Using Explainable Artificial IntelligenceElectronics 2025; 14(8): 1648 doi: 10.3390/electronics14081648
13
Aditya Bhattacharya, Simone Stumpf, Robin De Croon, Katrien Verbert. Explanatory Debiasing: Involving Domain Experts in the Data Generation Process to Mitigate Representation Bias in AI SystemsProceedings of the 2025 CHI Conference on Human Factors in Computing Systems 2025; : 1 doi: 10.1145/3706598.3713497
14
Thawirasm Jungrungrueang, Sawrawit Chairat, Kasidach Rasitanon, Praopim Limsakul, Krit Charupanit. Translational approach for dementia subtype classification using convolutional neural network based on EEG connectome dynamicsScientific Reports 2025; 15(1) doi: 10.1038/s41598-025-02018-7
15
Rohan Khan, Tulika Bhardwaj, Carmen Li, Anirban Chakraborty, José M. Seoane, James M. Brooks, Bernie B. Bernard, Adam MacDonald, Natasha MacAdam, Calvin Campbell, Martin Fowler, Casey R. J. Hubert, Blaire Steven. Predicting hydrocarbon presence in marine cold seep sediments using machine learning models trained with benthic bacterial 16S rRNA taxonomyMicrobiology Spectrum 2025;  doi: 10.1128/spectrum.03033-24
16
Lidan Liu, Bo Liu, Ming Liao, Qiuying Gan, Qianyi Huang, Yihua Yang. Identifying key predictive features for live birth rate in advanced maternal age patients undergoing single vitrified-warmed blastocyst transferReproductive Biology and Endocrinology 2024; 22(1) doi: 10.1186/s12958-024-01295-7
17
Benjamin Hagedorn, Mark Pratt, Conor Sweeney, Matt Becker, Danielle Bram, Ben Chou, Aaron Gaines. Assessing risk of groundwater pollution exposure from sea level rise in CaliforniaScience of The Total Environment 2025; 989: 179695 doi: 10.1016/j.scitotenv.2025.179695
18
Haokun Dong, Shuangzhe Liu, Dat Tran. Neural Information ProcessingCommunications in Computer and Information Science 2025; 2293: 184 doi: 10.1007/978-981-96-7005-5_13
19
Tajul Miftahushudur, Halil Mertkan Sahin, Bruce Grieve, Hujun Yin. A Survey of Methods for Addressing Imbalance Data Problems in Agriculture ApplicationsRemote Sensing 2025; 17(3): 454 doi: 10.3390/rs17030454
20
Chuan-Sheng Hung, Chun-Hung Richard Lin, Shi-Huang Chen, You-Cheng Zheng, Cheng-Han Yu, Cheng-Wei Hung, Ting-Hsin Huang, Jui-Hsiu Tsai. FADEL: Ensemble Learning Enhanced by Feature Augmentation and DiscretizationBioengineering 2025; 12(8): 827 doi: 10.3390/bioengineering12080827
21
Redet Assefa, Adane Mamuye, Marco Piangerelli. COVID-19 Severity Classification Using Hybrid Feature Extraction: Integrating Persistent Homology, Convolutional Neural Networks and Vision TransformersBig Data and Cognitive Computing 2025; 9(4): 83 doi: 10.3390/bdcc9040083
22
Manohar Pavanya, Krishnaraj Chadaga, Vennila J, Akhila Vasudeva, Bhamini Krishna Rao, Srikanth Prabhu, Shashikala K Bhat. Prediction of birthweight with early and mid-pregnancy antenatal markers utilising machine learning and explainable artificial intelligenceScientific Reports 2025; 15(1) doi: 10.1038/s41598-025-11837-7
23
Tom Velez, Zara Ibrahim, Kanayo Duru, Dante Velez, Maria Triantafyllou, Kenneth McKinley, Pasha Saif, Panagiotis Kratimenos, Andy Clark, Ioannis Koutroulis. Predicting hospital admissions, ICU utilization, and prolonged length of stay among febrile pediatric emergency department patients using incomplete and imbalanced electronic health record (EHR) data strategiesInternational Journal of Medical Informatics 2025; 200: 105905 doi: 10.1016/j.ijmedinf.2025.105905
24
Performance Analysis of Facial Expression Recognition by Using Geometry Augmentation and Random Oversampling for CNN Model2024 10th International Conference on Smart Computing and Communication (ICSCC) 2024; : 614 doi: 10.1109/ICSCC62041.2024.10690584
25
Theoretical and Clinical GeropharmacologyAdvances in Pharmacology 2025; 104: 87 doi: 10.1016/bs.apha.2025.01.017
26
Min-Yuan Cheng, Quoc-Tuan Vu, Husni Mubarok. Satellite-inspired deep semantic mining for classifying contractual risk clausesExpert Systems with Applications 2026; 295: 128933 doi: 10.1016/j.eswa.2025.128933
27
Lidan Liu, Bo Liu, Huimei Wu, Qiuying Gan, Qianyi Huang, Mujun Li. Optimizing predictive features using machine learning for early miscarriage risk following single vitrified-warmed blastocyst transferFrontiers in Endocrinology 2025; 16 doi: 10.3389/fendo.2025.1557667
28
Noraina Hafizan Norman, Marshima Mohd Rosli, Nagham Mohammed Al-Jaf, Norhasmira Mohammad, Mohd Yusmiaidil Putera Mohd Yusof. Automated cervical vertebral maturation staging using deep learning: Enhancing accuracy through random oversampling and memory optimizationAPOS Trends in Orthodontics 2025; 0: 1 doi: 10.25259/APOS_322_2024
29
Mengtian Peng, Bin Yu, Juan Hu, Xiaoxin Xie, Jihong He. Radiomics-based classification of pediatric dental trauma in periapical radiographs: a preliminary studyBMC Medical Imaging 2025; 25(1) doi: 10.1186/s12880-025-01877-w
30
Muhammad Waqar, Muhammad Bilal Shahnawaz, Sajid Saleem, Hassan Dawood, Usman Muhammad, Hussain Dawood. Enhancing Heart Attack Prediction: Feature Identification from Multiparametric Cardiac Data Using Explainable AIAlgorithms 2025; 18(6): 333 doi: 10.3390/a18060333
31
Penglu Yang, Bin Yang, Sameena Naaz. Development and validation of predictive models for diabetic retinopathy using machine learningPLOS ONE 2025; 20(2): e0318226 doi: 10.1371/journal.pone.0318226
32
Jun Wan, Jia Zhou. Use machine learning to predict bone metastasis of esophageal cancer: A population-based studyDIGITAL HEALTH 2025; 11 doi: 10.1177/20552076251325960
33
Jaemin Jeong, Ji-Hoon Jeong, Gee-Myung Moon, Young-Duk Seo, Euijong Lee. Application of Explainable Artificial Intelligence for personalized childhood weight management using IoT dataComputers in Biology and Medicine 2025; 196: 110855 doi: 10.1016/j.compbiomed.2025.110855
34
Andrea Heaney, Emma Murphy, Eugene Hickey. Pervasive Computing Technologies for HealthcareLecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2025; 611: 179 doi: 10.1007/978-3-031-85572-6_11
35
Pragati Sachdeva, Amarjit Malhotra, Karan Gupta. Quality Data Extractor (QDE): Elevating Synthetic Data Augmentation Through Post-Generation FiltrationIEEE Access 2025; 13: 150901 doi: 10.1109/ACCESS.2025.3603435
36
Lauren McBride, Varsha D. Badal, Philip D. Harvey, Amy Pinkham, Ankit Aich, Natalie Parde, Colin Depp. Evaluating natural language processing derived linguistic features associated with current suicidal ideation, past attempts, and future suicidal behaviorJournal of Psychiatric Research 2025; 187: 25 doi: 10.1016/j.jpsychires.2025.05.004
37
Steve Agius, Vincent Cassar, Caroline Magri, Wasiq Khan, Dhiya Al-Jumeily Obe, Godwin Caruana, Luke Topham. Predicting Emergency Severity Index (ESI) level, hospital admission, and admitting ward in an emergency department using data-driven machine learningBMC Medical Informatics and Decision Making 2025; 25(1) doi: 10.1186/s12911-025-02941-9
38
Hyukjun Lee, Ji Won Han, Seung Wan Suh, Hee Won Yang, Dae Jong Oh, Eunji Lim, Jin Shin, Bong Jo Kim, Dong Woo Lee, Jeong Lan Kim, Jin Hyeong Jhoo, Joon Hyuk Park, Jung Jae Lee, Kyung Phil Kwak, Seok Bum Lee, Seok Woo Moon, Seung-Ho Ryu, Shin Gyeom Kim, Ki Woong Kim. A sleep-based risk model for predicting dementia: Development and validation in a Korean cohortJournal of Alzheimer’s Disease 2025; 106(1): 280 doi: 10.1177/13872877251340094
39
Blanca Vazquez, Nidiyare Hevia-Montiel, Jorge Perez-Gonzalez, Paulina Haro, Lei Chu. Weighted–VAE: A deep learning approach for multimodal data generation applied to experimental T. cruzi infectionPLOS ONE 2025; 20(3): e0315843 doi: 10.1371/journal.pone.0315843
40
Fitria Wulandari Ramlan, Colm O'Riordan, Gabriel Kronberger, James McDermott. Can Synthetic Data Improve Symbolic Regression Extrapolation Performance?Proceedings of the Genetic and Evolutionary Computation Conference Companion 2025; : 2548 doi: 10.1145/3712255.3734356
41
Olachi O. Oleru, Kim‐Anh‐Nhi Nguyen, Peter Taub, Arash Kia. Machine Learning‐Based Flap Takeback Prediction Modeling: Theory for a Real‐Time, Patient‐Specific Postoperative Flap Monitoring and Alert SystemMicrosurgery 2025; 45(6) doi: 10.1002/micr.70100
42
Damian Mikulski, Marcin Kamil Kędzior, Grzegorz Mirocha, Katarzyna Jerzmanowska-Piechota, Żaneta Witas, Łukasz Woźniak, Magdalena Pawlak, Kacper Kościelny, Michał Kośny, Paweł Robak, Aleksandra Gołos, Tadeusz Robak, Wojciech Fendler, Joanna Góra-Tybor. Predictors and Profile of Severe Infectious Complications in Multiple Myeloma Patients Treated with Daratumumab-Based Regimens: A Machine Learning Model for Pneumonia RiskCancers 2024; 16(21): 3709 doi: 10.3390/cancers16213709
43
Sylvester Gomes, Harpreet Dhanoa, Phil Assheton, Ewan Carr, Damian Roland, Akash Deep. Predicting sepsis treatment decisions in the paediatric emergency department using machine learning: the AiSEPTRON studyBMJ Paediatrics Open 2025; 9(1): e003273 doi: 10.1136/bmjpo-2024-003273
44
Anthony B. Mutema, Lillian Linda, Daudi Jjingo, Segun Fatumo, Eugene Kinyanda, Allan Kalungi. Predicting suicidality in people living with HIV in Uganda: a machine learning approachFrontiers in Psychiatry 2025; 16 doi: 10.3389/fpsyt.2025.1584335
45
Jui-Sheng Chou, Peng-Cheng Yeh, Chi-Yun Liu, Kuan-Jung Chen. Improving detection of pollution fee declarations for environmental policy compliance through metaheuristic-optimized ensemble learningEngineering, Construction and Architectural Management 2025;  doi: 10.1108/ECAM-08-2024-1113
46
Amine Hade, Mohamed Elhia. Predicting mortgage credit defaults in morocco using machine learning approachesDiscover Artificial Intelligence 2025; 5(1) doi: 10.1007/s44163-025-00303-y
47
Sonali Lunawat, Jyoti Rao, Pramod Patil. ASBO-MAT-BiLSTM: Social Media Network Anomaly Detection Using Optimized Multihead Attention Transformer based Model2025 3rd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT) 2025; : 2209 doi: 10.1109/IDCIOT64235.2025.10915016
48
Qian Xu, Ruicong Yu, Xue Cai, Guanjie Chen, Yueyue Zheng, Cuirong Xu, Jing Sun. Machine learning-based risk factor analysis and prediction model construction for mortality in chronic heart failureJournal of Global Health 2025; 15 doi: 10.7189/jogh.15.04242
49
Manuel Sigle, Wenke Faller, Diana Heurich, Monika Zdanyte, Robert Wunderlich, Meinrad Gawaz, Karin Anne Lydia Müller, Andreas Goldschmied. Machine learning predicts emergency physician specialties from treatment strategies for patients suspected of myocardial infarctionInternational Journal of Cardiology 2024; 413: 132332 doi: 10.1016/j.ijcard.2024.132332
50
Michael Peng, Elisheva R. Stern, Hanwen Hu. Forecasting China bond default with severe class-imbalanced data: A simple learning model with causal inferenceEconomic Modelling 2025; 144: 106985 doi: 10.1016/j.econmod.2024.106985
51
Muhammad Nazim Razali, Nureize Arbaiy, Pei-Chun Lin, Syafikrudin Ismail. Optimizing Multiclass Classification Using Convolutional Neural Networks with Class Weights and Early Stopping for Imbalanced DatasetsElectronics 2025; 14(4): 705 doi: 10.3390/electronics14040705
52
Ivan Diryana Sudirman, Patah Herwanto. A Clustering-Based Oversampling Approach for Class Imbalance in Mixed Data2025 4th International Conference on Electronics Representation and Algorithm (ICERA) 2025; : 539 doi: 10.1109/ICERA66156.2025.11087322