BPG is committed to discovery and dissemination of knowledge
Cited by in CrossRef
For: Seyahi N, Ozcan SG. Artificial intelligence and kidney transplantation. World J Transplant 2021; 11(7): 277-289 [PMID: 34316452 DOI: 10.5500/wjt.v11.i7.277]
URL: https://www.wjgnet.com/2220-3230/full/v11/i7/277.htm
Number Citing Articles
1
Covadonga Díez-Sanmartín, Antonio Sarasa Cabezuelo, Amado Andrés Belmonte. Ensemble of machine learning techniques to predict survival in kidney transplant recipientsComputers in Biology and Medicine 2024; 180: 108982 doi: 10.1016/j.compbiomed.2024.108982
2
Badi Rawashdeh, Haneen Al-Abdallat, Rawan Hamamreh, Beje Thomas, Emre Arpali, Cooper Matthew, Ty Dunn. Artificial Intelligence in Kidney Transplantation: A Comprehensive Scientometric AnalysisCurrent Transplantation Reports 2024;  doi: 10.1007/s40472-024-00447-3
3
Rachel C. Forbes, Beatrice P. Concepcion. Left digit bias in donor organ acceptance: what can we do to make it right?The American Journal of Surgery 2022; 224(4): 1103 doi: 10.1016/j.amjsurg.2022.05.039
4
Kannan Sridharan, Shamik Shah. Developing supervised machine learning algorithms to evaluate the therapeutic effect and laboratory-related adverse events of cyclosporine and tacrolimus in renal transplantsInternational Journal of Clinical Pharmacy 2023; 45(3): 659 doi: 10.1007/s11096-023-01545-5
5
Ekamol Tantisattamo, Antoney J. Ferrey, Uttam G. Reddy, Fatima T. Malik, Man Kit Michael Siu, Fawaz Al Ammary, Wei Ling Lau. A paradigm shift from office to home-based blood pressure measurement approaches in kidney transplant recipientsCurrent Opinion in Nephrology & Hypertension 2024; 33(1): 67 doi: 10.1097/MNH.0000000000000951
6
Kirolos Eskandar. Artificial intelligence in nephrology: revolutionizing diagnosis, treatment, and patient careKIDNEYS 2024; 13(3): 213 doi: 10.22141/2307-1257.13.3.2024.466
7
Tanja Belčič Mikič, Miha Arnol. The Use of Machine Learning in the Diagnosis of Kidney Allograft Rejection: Current Knowledge and ApplicationsDiagnostics 2024; 14(22): 2482 doi: 10.3390/diagnostics14222482
8
Nahed Alowidi, Razan Ali, Munera Sadaqah, Fatmah M. A. Naemi. Advancing Kidney Transplantation: A Machine Learning Approach to Enhance Donor–Recipient MatchingDiagnostics 2024; 14(19): 2119 doi: 10.3390/diagnostics14192119
9
Tushar Bajaj, Jay L. Koyner. Artificial Intelligence in Acute Kidney Injury PredictionAdvances in Chronic Kidney Disease 2022; 29(5): 450 doi: 10.1053/j.ackd.2022.07.009
10
Raquel M. Quinino, Fabiana Agena, Luis Gustavo Modelli de Andrade, Mariane Furtado, Alexandre D.P. Chiavegatto Filho, Elias David-Neto. A Machine Learning Prediction Model for Immediate Graft Function After Deceased Donor Kidney TransplantationTransplantation 2023; 107(6): 1380 doi: 10.1097/TP.0000000000004510
11
Aleena Jamal, Som Singh, Fawad Qureshi. Synthetic data as an investigative tool in hypertension and renal diseases researchWorld Journal of Methodology 2025; 15(1): 98626 doi: 10.5662/wjm.v15.i1.98626
12
Junseok Jeon, Jae Yong Yu, Yeejun Song, Weon Jung, Kyungho Lee, Jung Eun Lee, Wooseong Huh, Won Chul Cha, Hye Ryoun Jang. Prediction tool for renal adaptation after living kidney donation using interpretable machine learningFrontiers in Medicine 2023; 10 doi: 10.3389/fmed.2023.1222973
13
Ekamol Tantisattamo, Umberto Maggiore. Revisiting pre-transplant preparation to optimize long-term kidney transplant outcomesJournal of Nephrology 2024; 37(6): 1425 doi: 10.1007/s40620-024-02108-1
14
Badi Rawashdeh. Artificial Intelligence in Medicine and Surgery - An Exploration of Current Trends, Potential Opportunities, and Evolving Threats - Volume 2 [Working Title]Artificial Intelligence 2024; 0 doi: 10.5772/intechopen.114356
15
Zhe Yang, Minrui Zhang, Xianduo Li, Zhipeng Xu, Yi Chen, Xiaoyu Xu, Dongdong Chen, Lingquan Meng, Xiaoqing Si, Jianning Wang. Fluorescence spectroscopic profiling of urine samples for predicting kidney transplant rejectionPhotodiagnosis and Photodynamic Therapy 2024; 45: 103984 doi: 10.1016/j.pdpdt.2024.103984
16
Vidya Sankar Viswanathan, Paula Toro, Germán Corredor, Sanjay Mukhopadhyay, Anant Madabhushi. The state of the art for artificial intelligence in lung digital pathologyThe Journal of Pathology 2022; 257(4): 413 doi: 10.1002/path.5966
17
Tu T. Tran, Giae Yun, Sejoong Kim. Artificial intelligence and predictive models for early detection of acute kidney injury: transforming clinical practiceBMC Nephrology 2024; 25(1) doi: 10.1186/s12882-024-03793-7
18
Evgenia Kotsifa, Vasileios K. Mavroeidis. Present and Future Applications of Artificial Intelligence in Kidney TransplantationJournal of Clinical Medicine 2024; 13(19): 5939 doi: 10.3390/jcm13195939