Systematic Reviews Open Access
Copyright ©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.
World J Crit Care Med. Jul 9, 2022; 11(4): 269-297
Published online Jul 9, 2022. doi: 10.5492/wjccm.v11.i4.269
Immunomodulatory therapy for the management of critically ill patients with COVID-19: A narrative review
David Andaluz-Ojeda, Department of Critical Care, Hospital Universitario HM Sanchinarro, Hospitales Madrid, Madrid 28050, Spain
Pablo Vidal-Cortes, Lorena Del Río Carbajo, Estefanía Prol Silva, Jorge Nieto del Olmo, Department of Intensive Care, Complejo Hospitalario Universitario de Ourense, Ourense 32005, Spain
Álvaro Aparisi Sanz, Department of Cardiology, Hospital del Mar, Barcelona 08003, Spain
Borja Suberviola, Department of Intensive Care, Hospital Universitario Marqués de Valdecilla, Santander 39008, Spain
Leonor Nogales Martín, Department of Intensive Care, Hospital Clínico Universitario de Valladolid, Valladolid 47005, Spain
José Barberán, Department of Internal Medicine, Hospital Universitario HM Montepríncipe, Hospitales Madrid, Boadilla del Monte 28860, Madrid, Spain
Ivan Cusacovich, Department of Internal Medicine, Hospital Clínico Universitario de Valladolid, Valladolid 47005, Spain
ORCID number: David Andaluz-Ojeda (0000-0001-8167-0871); Pablo Vidal-Cortes (0000-0003-0225-9975); Álvaro Aparisi Sanz (0000-0002-3230-6368); Borja Suberviola (0000-0001-7681-3890); Lorena Del Río Carbajo (0000-0002-1606-8785); Leonor Nogales Martín (0000-0003-2736-3760); Estefanía Prol Silva (0000-0002-4893-3075); Jorge Nieto del Olmo (0000-0002-4304-7795); José Barberán (0000-0002-8364-5765); Ivan Cusacovich (0000-0002-4984-0639).
Author contributions: Andaluz-Ojeda D, Vidal-Cortes P, and Cusacovich I designed the study, developed the material and methods section, the introduction and a global discussion; Aparisi Sanz Á, Suberviola B, Del Río Carbajo L, Nogales Martín L, Prol Silva E, Nieto del Olmo J, and Barberán J carried out a selective bibliographic search in relation to each of the study points and developed a partial discussion; and all authors participated in the final recommendations for each class.
Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.
PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and confirm that the manuscript was prepared and revised according to the PRISMA 2009 Checklist.
Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/
Corresponding author: David Andaluz-Ojeda, MD, PhD, Assistant Professor, Consultant Physician-Scientist, Department of Critical Care, Hospital Universitario HM Sanchinarro, Hospitales Madrid, Oña, 10, Madrid 28050, Spain. davidandaluz78@yahoo.es
Received: July 22, 2021
Peer-review started: July 22, 2021
First decision: November 11, 2021
Revised: December 1, 2021
Accepted: May 16, 2022
Article in press: May 16, 2022
Published online: July 9, 2022
Processing time: 349 Days and 21.5 Hours

Abstract
BACKGROUND

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding the physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies.

AIM

To describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of hyperinflammation and abnormal immune responses to disease progression together with a complete narrative review of the different immunoadjuvant treatments used so far in COVID-19 and their indication in severe and life-threatening subsets.

METHODS

A comprehensive literature search was developed. Authors reviewed the selected manuscripts following the PRISMA recommendations for systematic review and meta-analysis documents and selected the most appropriate. Finally, a recommendation of the use of each treatment was established based on the level of evidence of the articles and documents reviewed. This recommendation was made based on the consensus of all the authors.

RESULTS

A brief rationale on the SARS-CoV-2 pathogenesis, immune response, and inflammation was developed. The usefulness of 10 different families of treatments related to inflammation and immunopathogenesis of COVID-19 was reviewed and discussed. Finally, based on the level of scientific evidence, a recommendation was established for each of them.

CONCLUSION

Although several promising therapies exist, only the use of corticosteroids and tocilizumab (or sarilumab in absence of this) have demonstrated evidence enough to recommend its use in critically ill patients with COVID-19. Endotypes including both, clinical and biological characteristics can constitute specific targets for better select certain therapies based on an individualized approach to treatment.

Key Words: COVID-19; Critically ill patients; Treatment; Immunomodulary drugs; Phenotype; Immunosupression

Core Tip: Two years after the onset of the pandemic the search for the most appropriate treatment of coronavirus disease 2019 (COVID-19) continues. Few treatments have been evaluated in the context of critically ill patients with COVID-19 considering it in most clinical trials as a negative “end point” of the disease rather than a study subject. This fact makes it extremely difficult to establish degrees of recommendation regarding the different therapeutic options currently available. This review aims to summarize the immunopathogenesis and the current evidence regarding the different immunomodulatory strategies tested in critically ill patients with COVID-19. In addition, the presence of different immunophenotypes that in the future will serve as a basis for individualized treatments is demonstrated.



INTRODUCTION

In late 2019, a virus, currently named coronavirus disease 2019 (COVID-19), caused an outbreak of 27 acute respiratory distress syndrome cases related to a seafood market in Wuhan, China. From that moment, the virus has spread rapidly worldwide until, on March 11th, the World Health Organization (WHO) classified it as a pandemic[1]. As of July 24th, 2021, more than 190 million people have been infected, and it has caused more than 4 million deaths[2].

Although most people with COVID-19 have only mild or uncomplicated symptoms, 10%-15% requires hospitalization and oxygen therapy[3,4]. From the beginning, a large number of patients presented severe respiratory failure, needing mechanical ventilation (MV) and intensive care unit (ICU) admission, exceeding the capacity of many of them and turning COVID-19 into a challenge for health systems all over the world[5-9]. Furthermore, we observed a relationship between ICU caseload and mortality[10,11].

The lack of an available, effective treatment has led to a spate of treatment recommendations[12-15], which are not always backed by sufficient scientific evidence[16,17]. We paid particular attention to a presumed specific cytokine storm secondary to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection[18-20], with a special effort to modulate the inflammatory response of these patients. One year after the onset of the disease, many questions remain unanswered, and we continue to search for the most appropriate treatment. This review aims to summarize the current evidence regarding the different immunomodulatory strategies tested in critically ill patients with COVID-19.

MATERIALS AND METHODS

A comprehensive literature search was developed by using the keywords: “immunotherapy”, “immunosuppressives”, “haemophagocytic syndrome”, “inflammation”, “antimalarials”, “hydroxychloroquine”, “chloroquine”, “anakinra”, “canakinumab”, “tocilizumab”, “sarilumab”, “corticosteroids”, “dexamethasone”, “methylprednisolone”, “immunoglobulins or convalescent” “JAK inhibitors”, “cyclosporine”, “colchicine”, “statins”, “interleukin 7”, “thymosin”, “PD1 and PD1-L blockers”. We restricted the search to: “SARS-CoV-2”, “COVID-19”, “severe COVID-19” and “treatment” to identify articles published in English from MEDLINE, PubMed, and The Cochrane Library (until January 2021). The meta-analysis, clinical trials, case-control or cohort studies, brief reports, reviews, and systematic reviews were included. Reference Citation Analysis, an artificial intelligence technology-based open citation analysis database was employed. Current international guidelines on the management of COVID-19 were also retrieved and included (Centers for Disease Control and Prevention, European Centre for Disease Prevention and Control, Infectious Diseases Society of America, WHO, National Health Service, Spanish Society of Intensive Care Medicine). Articles in preprint format were also evaluated if they were considered relevants and well designed. The authors reviewed the selected manuscripts and selected the most appropriate. Finally, we established a recommendation of the use of each treatment based on the level of evidence of the articles and documents reviewed. This recommendation was made based on the consensus of all the authors. We carried out the rest of the work methodology following the PRISMA recommendations for systematic review and meta-analysis documents (http://prisma-statement.org/PRISMAStatement/Checklist).

RESULTS
Viral infection and the inflammatory response

SARS-CoV-2 infects cells that express surface receptors for angiotensin-converting enzyme 2 (ACE-2) like airway epithelial cells, type II pneumocytes, vascular endothelial cells, and macrophages in the lung, and transmembrane protease, serine 2[21-23]. Active replication and release of the virus cause the host cell to undergo pyroptosis and release of damage-associated molecular patterns, including nucleic acids, adenosine triphosphate (ATP), and atypical squamous cell oligomers. These molecules are recognized by neighboring epithelial cells, endothelial cells, and alveolar macrophages, triggering the liberation of proinflammatory cytokines and chemokines [including interleukin (IL)-2γ, IL-6, IL-8, granulate-macrophage colony-stimulating factor, macrophage inflammatory protein 1α (MIP1α), MIP1β, and monocyte chemoattractant protein 1]. These mediators attract macrophages, monocytes, and T lymphocytes to the site of infection, promoting increased inflammation and establishing a pro-inflammatory feedback loop[24]. This inflammatory response is much more exaggerated in the subgroup of patients who require ICU admission and those with fatal outcomes and affects different organs and systems, including the endothelium[25-28].

Dysregulated immune response and COVID-19 immunophenotypes

In severe COVID-19, many patients express a dysregulated immune response characterized by a defective adaptive response and an exacerbated innate immune response. This situation leads to poor control of the virus, and overproduction of proinflammatory cytokines that initially damage lung infrastructure[29-31]. A cytokine storm similar to that in hemophagocytic syndrome has been described in a subgroup of COVID-19 patients with elevated levels of proinflammatory cytokines, particularly soluble receptor for IL-2γ, IL-6, and tumor necrosis factor-α (TNF-α)[32]. The resulting hypercytokinemia extends to other tissues and can cause considerable organic damage[28]. This finding would justify the use of immunosuppressive therapies such as corticosteroids or cytokine-targeted therapy.

Inflammation is not always the dominant phenomenon in COVID-19[33-35]. Different authors have revealed that in many severe cases of COVID-19 the presence of immune downregulation with profound immunosuppression as primary phenomenon precedes hyperinflammation. These immunological alterations are varied and can be classified into different subsets or phenotypes[30,36,37]. One of these immunophenotypes would be characterized by the presence in most patients with severe COVID-19 of coexisting alterations in numbers, subset composition, cycling, activation, and gene expression of T cells. Numerous studies show a relationship between profound lymphopenia with a worse prognosis and higher mortality in COVID-19[38-40]. This lymphopenia affects the different subsets of T cells, and the cause is not well established. We postulate several causes: T cell exhaustion, migration and sequestration of T cells to affected tissues (especially the lungs), a deficit of lymphopoiesis induced by the presence of hypercytokinemia, or an increase in apoptosis mediated by a virus-induced overexpression of type 1 programmed death receptors (PD-1) and its ligand (PD-L1).

Another immunophenotype is characterized by decreased antigen presentation capacity, demonstrated by a deficit in human leukocyte antigen-DR expression in mononuclear-phagocytic system cells, particularly in intermediate monocytes. We observed this phenotype in more than 50% of severe and critical forms of COVID-19, and it is inversely related to the inflammatory activity mediated by cytokines such as IL-6[37,41]. In this regard, hypercitokinemia (both: Pro and anti-inflammatory cytokines) is another typical phenotype in severe forms of COVID-19. IL-6, IL-8, IL-1β, and IL-10 levels were higher in COVID-19, and the increases were severity-related. Induced protein 10 (IP-10) CXCL10, a chemokine rapidly and transiently induced following vaccination and other virus infections, almost invariably increased in COVID-19 and was severity-related[42]. Thus, many patients with COVID-19 were described by a severity-related triad of IP-10, IL-6, and IL-10[20,32,36,43]. Finally, emerging data indicate that complement and neutrophils contribute to an inadequate immune response that fuels hyperinflammation and thrombotic microangiopathy, increasing COVID-19 mortality. High plasma levels of neutrophil extracellular traps, tissue factor activity, and sC5b-9 were detected in critical patients[44,45]. All these conditions constitute immune signatures associated with a worse prognosis of COVID-19 that, on the other hand, could also suppose therapeutic targets.

Antimalarials: Hydroxychloroquine and chloroquine

Hydroxychloroquine (HCQ) is an antimalarial 4-aminoquinoline that showed in vitro activity against various RNA viruses, including SARS-CoV-2[46]. Some authors believe that HCQ acts against SARS-CoV-2 through multiple mechanisms[47]: Inhibition of viral entry; inhibition of viral release in the host cell; reduction of viral infectivity and immune modulation.

The absence of efficacious treatment tools at the beginning of the pandemic led to the wide use of chloroquine and HCQ. Thus, in several controlled studies carried out in Chinese hospitals, chloroquine treatment was able, compared to controls, to prevent the development of pneumonia, improve the radiological lung image, accelerate the elimination of the virus and shorten the duration of the disease[48-50]. Similarly, a French study with a small sample size found that treatment with HCQ accelerated conversion to a state of seronegativity for the virus[51]. However, these studies had significant methodological limitations that made their results questionable.

Nowadays, the body of evidence on HCQ e showed no benefit in terms of mortality reduction, invasive MV requirements, or time to clinical improvement. Until now, 31 randomized controlled trials (RCTs), including 16536 patients, have compared HCQ or chloroquine against standard of care or other treatments. The Recovery trial was the biggest, with over 11800 patients randomized to different treatment arms. 1561 patients were randomized to receive HCQ and 3155 to receive usual care after an interim analysis determined a lack of efficacy. Death within 28 d occurred in 421 patients (27.0%) in the HCQ group and in 790 (25.0%) in the usual-care group [rate ratio (RR) = 1.09; 95% confidence interval (CI): 0.97-1.23; P = 0.15]. The results suggested that patients in the HCQ group were less likely to be discharged from the hospital alive within 28 d than those in the usual-care group (59.6% vs 62.9%; RR = 0.90; 95%CI: 0.83-0.98). Moreover, among the patients who were not undergoing MV at baseline, those in the HCQ group had a higher frequency of invasive MV or death (30.7% vs 26.9%; RR = 1.14; 95%CI: 1.03-1.27)[52]. More recently, in the Solidarity trial, 947 patients were assigned to receive HCQ. Death occurred in 104 of 947 patients receiving HCQ and in 84 of 906 receiving its control (RR = 1.19; 95%CI: 0.89-1.59; P = 0.23)[53].

The main RCTs that have compared the effect of HCQ or chloroquine on mortality have been included in two metanalyses. The one made by the WHO combined the Recovery and Solidarity trials with other six smaller studies involving hospitalized patients with suspected or confirmed COVID-19. The results of this metanalysis showed that HCQ or chloroquine probably increase mortality, RR = 1.08 (95%CI: 0.99-1.19); does not reduce invasive MV requirement; RR = 1.05 (95%CI: 0.9-1.22) and may not improve time to symptom resolution, RR = 1.05 (95%CI: 0.94-1.18)[54]. These results are consistent with other published metanalysis that included 28 published or unpublished RCTs, with 10319 patients, obtaining a combined odds ratio (OR) on all-cause mortality for HCQ of 1.11 (95%CI: 1.02-1.20; = 0%; 26 trials; 10012 patients) and a combined OR for chloroquine of 1.77 (95%CI: 0.15-21.13, = 0%; 4 trials; 307 patients)[55]. In contrast, in a recent retrospective observational study conducted by Schlesinger et al[56] in 3451 unselected patients hospitalized in 33 clinical centers in Italy, HCQ use was associated with a 30% lower risk of in-hospital death COVID-19 hospitalized patients. In conclusion, awaiting new randomized clinical trials focused on critically ill patients, the treatment with HCQ is associated with increased risk of mortality in COVID-19 patients, and there was no benefit of chloroquine. For these reasons, its use is discouraged in patients with severe COVID-19 infection.

Colchicine

Colchicine has been in the spotlight as a treatment for SARS-CoV-2 infected patients given its anti-inflammatory and antiviral properties, which lead to the hypothesis that it might be beneficial with the systemic inflammation observed in the most severe cases. Many are the mechanism of action involved in colchicine’s properties, but they are underpinned mainly by inhibiting neutrophil chemotaxis by interfering with microtubule formation, modulation of proinflammatory cytokines, and attenuation of NOD-like receptor family pyrin domain containing 3 inflammasome formation, among others[56].

Several studies have explored the potential risk-benefit ratio of colchicine in ambulatory and inpatient based on its properties. A meta-analysis reported a survival benefit (OR = 0.62; 95%CI: 0.48-0.81) of patients with Colchicine treatment with a tendency towards a decreased need of MV [0.75 (95%CI: 0.45-1.25)][57]. However, most studies focus on the out-hospital or mild cases of COVID-19 patients. Not much has been reported about colchicine in the most severe cases. In this sense, Scarsi et al[58] observed that colchicine was independently associated with survival [hazards ratio (HR) = 0.151; 95%CI: 0.062-0.368] despite it was given to patients with worse PaO2/FiO2. Similarly, Brunetti et al[59] also observed a significant decreased mortality in patients with severe COVID-19 among those who received colchicine (OR = 0.20; 95%CI: 0.05-0.80; P = 0.023).

To date, only one prospective, open-label, randomized trial has explored the potential benefits of colchicine among severe COVID-19 patients. In this trial, patients who received colchicine did show an improved time to clinical deterioration compared to those without colchicine[60]. However, recently, the RECOVERY trial closed the recruitment of colchicine for hospitalized COVID-19 patients after a review did not observe any clinical benefit[61].

In conclusion, given the disparity, we cannot recommend colchicine despite initial data being promising until further evidence. Among more than 30 clinical randomized trials ongoing analyzing the effect of Colchicine in COVID-19, only 3 focus specifically on severe cases or patients admitted to the ICU: In particular ECLA PHRI COLCOVID Trial (NCT04328480), COMBATCOVID trial (NCT04363437), and COLHEART-19 (NCT04762771). These trials will explore the requirement for MV, severe complications, or death among moderate-to-severe hospitalized COVID-19 patients.

Calcineurin inhibitors: Cyclosporine A and tacrolimus

Cyclosporine A and tacrolimus (also called FK-506) are immunosuppressive drugs known to prevent rejection after organ transplantation and for autoimmune diseases. These drugs bind to different cellular cyclophilins and FK506-binding proteins, respectively. This binding inhibits calcineurin (calcium-calmodulin-activated serine/threonine-specific phosphatase) blocking the translocation of the nuclear factor of the activated T cells from the cytosol to the nucleus, preventing the transcription of several genes that encode key cytokines involved in different immunological mechanisms[62-64].

Cyclosporin A binds cyclophilin A, which is essential for the replication of, among other viruses, SARS-CoV-2[65]. Therefore, the binding of cyclosporin A with the corresponding cyclophilin can block the replication of SARS-CoV-2[66]. Tacrolimus binds to FK506-binding proteins and inhibits calcineurin, in addition to suppressing the early phase of T-cell activation and the expression of numerous cytokines (IL-2, IL-4, TNF-α, INF-γ), which are necessary for the activation of the T cell in the immune response, perhaps preventing the cytokine storm seen in severe COVID-19 pneumonia[67].

In vitro evidence of inhibition of cyclosporine-mediated replication of various coronaviruses (including SARS) has been found. The cyclosporin analog, alisporivir, has been reported to inhibit SARS-CoV-2 in vitro but has never been tested in a clinical setting[68]. Given the antiviral and anti-inflammatory properties of calcineurin inhibitors, they could have the potential to prevent the uncontrolled inflammatory response and replication of SARS-CoV-2, in addition to acute lung injury. However, there is not enough evidence to recommend its use in severe COVID-19. Currently, several clinical trials are studying the possible benefit of the administration of cyclosporine (NCT04492891, NCT04540926, and NCT04341038) or tacrolimus (NCT04341038) in the treatment of hospitalized patients with pneumonia due to COVID-19. Unfortunately, to date, there are no studies with these drugs focused on critically ill patients.

IL-1 blocker: Anakinra, canakinumab

Anakinra is a recombinant human IL-1 receptor antagonist that blocks the activity of the proinflammatory cytokines IL-1α and IL-1β, and it is approved to treat patients with rheumatoid arthritis, Still’s disease, and some rare auto-inflammatory syndrome. Reanalysis of data from a phase III randomized controlled trial showed anakinra is related to a significant improvement in survival in the subset of septic patients with features of macrophage activation syndrome (MAS)[69,70].

MAS is a subgroup of secondary hemophagocytic lymphohistiocytosis mainly appearing in rheumatologic disorders. It is an acute syndrome with a hyperinflammatory immune state characterized by the activation and expansion of macrophages and T-lymphocytes. This persistent activation leads to a cytokine storm with high IL-1, IL-6, IL-18, soluble IL-2 receptor (CD 25), IFN-γ, and TNF-α, and is thought to be responsible for the multiorgan failure and the high mortality of this syndrome[71,72].

A subgroup of severe COVID-19 patients shows hyperinflammatory symptoms similar to MAS, with the release of IL-1, IL-6, IL 18, and IFN-γ, and the evidence shows a direct correlation between the severity of systemic inflammation, progression to respiratory failure, and fatal outcome[73,74]. For this reason, it has been proposed to treat this patient subgroup with anakinra. At the date, only the RCT CORIMUNO-ANA-1 investigating the role of anakinra in COVID-19 patients has been published[75]. In this trial, patients were randomized to intravenous anakinra or usual care in mild-to-moderate COVID-19 pneumonia (not requiring ICU admission) with serum C-reactive protein (CRP) levels higher than 25 mg/L. They could not demonstrate that the use of anakinra effectively reduced the need for non-invasive ventilation (NIV), MV, or mortality. The study was stopped due to futility. Another trial within the CORINOMUNO platform (CORINOMUNO-ANA-2) aimed to assess the effect of anakinra in patients with more severe COVID-19 patients (ICU admitted) has now been completed, and it is being analyzed.

Few observational studies analyze the treatment with anakinra in COVID-19 patients, and they have methodological limitations (Table 1). Cavalli et al[75] have analyzed high-dose (5 mg/kg twice daily) of intravenous anakinra compared to standard care: Higher survival rate and progressive improvements in PaO2/FiO2 ratio have been observed, without significant differences in days free of MV. Huet et al[76] have studied subcutaneous anakinra vs standard treatment, and they observed that anakinra significantly reduced the need for MV or mortality. The control group was a historical cohort with high mortality (about 50%).

Table 1 Summary of studies addressing interleukin-1 blockers on coronavirus disease 2019.
Ref.
Patients
Intervention
Comparison
Outcome
CORIMUNO-19 Collaborative group[74], RCTHospitalized patient with mild-to-moderate pneumonia, non-ICU admittedAnakinra (200 mg twice a day on days 1-3, 100 mg twice on day 4, 100 mg once on day 5) (n = 59)Standard care (n = 55)No difference in NIV/MV/death at day 4. Stopped early following the recommendation of the data and safety monitoring board
Cavalli et al[75], observationalPneumonia with moderate-to-severe ARDS and hyperinflammation (non-MV, non-ICU admitted)Anakinra (high dose: 5 mg/kg twice a day intravenously, n = 29; or low dose: 100 mg twice a day subcutaneously, n = 7)Standard care (retrospective cohort) (n = 16)Survival. High-dose anakinra: 72%, SC: 56%, P = 0.009
Huet et al[76], observationalBilateral pneumonia (non-ICU admitted)Anakinra (100 mg twice daily for 72 h, followed by 100 mg daily for 7 d) (n = 52)Standard care (historical group) (n = 44)Death/MV. Anakinra: HR = 0.22 (95%CI: 0.11-0.41), P < 0.0001. Death. Anakinra: HR = 0.30 (95%CI: 0.12-0.71), P = 0.0063. MV: Anakinra: HR = 0.22 (95%CI: 0.09-0.56), P = 0.0015
Kooistra et al[77], observationalICU admitted pneumonia (MV: 100%)Anakinra (300 mg iv, followed by 100 mg iv/6 h) (n = 21)Standard care (n = 39)No differences in duration of MV, ICU length of stay, or mortality

Kooistra et al[77] have analyzed mechanically ventilated COVID-19 patients treated with intravenous anakinra vs standard care in critically ill patients. Anakinra has been linked to a significant reduction in clinical signs of hyperinflammation, without significant differences in clinical outcomes. Dimopoulos et al[78] have studied rescue treatment with intravenous anakinra in seven MV-ICU patients and one non-ICU patient, all of them with a hemophagocytosis score positive. They concluded that anakinra could improve respiratory function and reduce mortality compared with the historical series of patients with MAS in sepsis. Canakinumab is a monoclonal antibody against IL-1β approved to treat familial Mediterranean fever and other chronic autoinflammatory syndromes[79].

In the setting of COVID-19 pneumonia, a small retrospective study has analyzed 10 patients with respiratory failure (not requiring MV) and hyperinflammation treated with canakinumab. A rapid improvement of the inflammatory response and oxygenation was observed[80]. An ongoing clinical phase 3, randomized, double-blind trial studies the efficacy and safety of canakinumab on Cytokine Release Syndrome in patients with COVID-19 pneumonia (NCT04362813). In conclusion, there is not enough data supporting the efficacy or safety of anakinra or canakinumab in treating critically ill patients with COVID-19, and therefore, we can’t establish a recommendation on their use or the optimal timing to start the treatment.

IL-6 blockers: Tocilizumab and sarilumab

COVID-19 patients who develop severe respiratory failure use to show a hyperinflammatory response, either MAS (driven by IL-1β) or, primarily, immune dysregulation (driven by IL-6). IL-6 is an inflammatory cytokine that exerts its effects inducing acute phase reactants (as CRP, fibrinogen, and hepcidin) in the liver and promotes antibody production and CD4 T helper and CD8 cytotoxic T cell differentiation[81,82]. A direct relationship between IL-6 levels and viral load, duration of SARS-CoV-2 viral positivity, the severity of COVID-19, and the need for MV has been observed[83-88].

Tocilizumab (TCZ) and sarilumab are two monoclonal antibodies that work by blocking the IL-6 soluble and membrane receptor. TCZ is approved to treat inflammatory diseases such as rheumatoid arthritis, juvenile idiopathic arthritis, giant cell arteritis, and cytokine release syndrome associated with chimeric antigen receptor T-cell therapy and sarilumab is approved for the treatment of rheumatoid arthritis[89]. Its use has been proposed to reduce the inflammatory response in COVID-19 patients. The first available data obtained from case series showed clinical, analytical, and radiological improvement after TCZ administration, even in patients needing MV[90-94].

The results obtained from comparative observational studies (cohorts or case-controls) were also promising[95-98]. Although some studies failed to show relevant differences between TCZ-treated and untreated patients[99,100], most of them showed a beneficial effect of the administration of TCZ: Oxygenation improvement, more days free of MV, less need for ICU admission or MV, and higher survival[101-105].

There are scarce studies that analyze the effect of TCZ in critically ill patients with COVID-19. In one of them, Biran et al[102] in 630 propensity score-matched ICU patients (> 90% of them receiving MV) found a lower in-hospital mortality risk (HR = 0.64; 95%CI: 0.47-0.87; P = 0.004) in patients treated with TCZ (400 mg). Rossotti et al[105] described similar results showing a lower risk of mortality in the general analysis and patients receiving MV, but not in less severe cases; Gupta et al[106] found an in-hospital reduction in mortality in those critically ill patients who received TCZ in the first 2 d of ICU admission. On the other hand, Rojas-Marte et al[107] analyzed 193 patients (62.7% with MV) and found that TCZ was related to lower mortality in non-ventilated patients (6.1% vs 26.5%, P = 0.024), but not in MV patients.

In addition, we have contradictory data from two studies focused on patients on MV. One of them shows a reduction in mortality risk (HR = 0.55; 95%CI: 0.33-0.90)[108], and the other failed to detect significant differences between those treated with TCZ and untreated patients[109,110]. More recently, we began to know the results of RCT investigating the effects of TCZ in COVID patients[85,111-113]. Among these, once again, there is no unanimity regarding the results. Salama et al[110] and Mariette et al[112], in hospitalized patients with SARS-CoV-2 pneumonia (not needing respiratory support), demonstrated a reduction in the risk of death or need of MV in patients treated with one or two doses of TCZ (8 mg/kg, maximum 800 mg). However, Stone et al[90] and Salvarani et al[111] failed to demonstrate a beneficial effect in patients treated with TCZ in similar patients (respiratory failure needing conventional oxygen therapy).

In a mixed population, including 38% of patients on MV, the COVACTA trial shows no evidence of improvement in the clinical situation on day 28 (primary outcome) but it shows a shorter hospital stay, less ICU admission, and less clinical failure rate in patients randomized to treatment with TCZ (8 mg/kg, max 800 mg, one or two doses)[113]. TOCIBRAS trial was prematurely interrupted because an excess of deaths at 15 d after randomization was detected in the TCZ group; this study included severe and critically ill COVID patients (23% receiving HFNO/NIV and 16% receiving MV)[114].

Recently, results of the RECOVERY platform trial were released[115]. In patients with clinical evidence of progressive COVID-19 (CRP ≥ 75 mg/L and need for supplemental oxygen to achieve oxygen saturation > 92%), treatment with TCZ improved survival and decreased the need for MV. The reduction in mortality with TCZ was higher in patients who also receive corticosteroids. REMAP-CAP trial addressed the impact of TCZ focused on critically ill patients. In this RCT, patients were randomized to be treated with TCZ (n = 366), sarilumab (n = 48), or usual care (n = 412). The authors reported that patients treated with IL-6 blockers (TCZ 8 mg/kg, max 800 mg, one or two doses; or sarilumab, 400 mg), within 24 h after the start of organ support, had more days free of hemodynamic or respiratory support and lower in-hospital mortality. Furthermore, it appears that the treatment effect is more significant when TCZ was combined with corticosteroids[116]. A summary of studies addressing IL-6 blockers on COVID-19 is available in Table 2.

Table 2 Summary of studies addressing interleukin-6 blockers on coronavirus disease 2019 (randomized clinical trials and observational studies including critically ill patients).
Ref.
Patients
Intervention
Comparison
Outcomes
Overinfection rate
Salama et al[110], RCT377TCZ (8 mg/kg, 1-2 doses)PlaceboMV/ECMO/mortality 28 d; 19.3% TCZ vs 12% placebo, P = 0.004TCZ 10% vs placebo 12.6%
Rosas et al[113], RCT438TCZ (8 mg/kg, 1-2 doses)PlaceboMortality: NS. Hospital LOS: TCZ: 20, placebo: 28 d (P = 0.037). ICU admission: TCZ: 23.6%, SC: 40.6% (P = 0.01). ICU, LOS: TCZ: 9.8, SC: 15.5 d (P = 0.045)TCZ 21% vs placebo 25.9%
Stone et al[90], RCT242TCZ (8 mg/kg, max 800 mg, 1 dose)PlaceboMV or death. TCZ: 10.6%, SC: 12.5% (NS). Clinical worsening. TCZ: 19.3%, SC: 17.4% (NS)TCZ 8.15% vs placebo 17.1%
Salvarani et al[111], RCT123TCZ (8 mg/kg, max 800 mg, 1-2 doses)Standard of careNSTCZ 1.7% vs TE 6.3%
Mariette et al[112], RCT131TCZ (8 mg/kg, max 800 mg, 1-2 doses)Standard of careNIV/MV/death at day 4. TCZ: 19%, SC: 28% (NS). Survival without HFNO/NIV/MV at day 14. TCZ: 24%, SC: 36% (probability: 95%). 28 d mortality. TCZ: 10.9%, SC: 11.9% (NS)TCZ 3.2% vs TE 16.4%
RECOVERY Collaborative Group[115], RCT4166TCZ (different regimes)Standard of care28 d mortality: TCZ: RR = 0.86 (95%CI: 0.77-0.96, P = 0.006)Not available
REMAP-CAP Investigators et al[116], RCT826TCZ (8 mg/kg, max 800 mg, 1-2 doses) (n = 366). Sarilumab (400 mg) (n = 48)Standard of careDays free of respiratory/hemodynamic support at day 21. TCZ: 10 d, sarilumab: 11 d, SC: 0 d. Hospital mortality. TCZ: 28%, sarilumab: 22.2% SC: 35.8% (probability TCZ better: 99.6%, probability sarilumab better: 99.5%)TCZ 0.2% vs TE 0%
Veiga et al[114], RCT129TCZ (8 mg/kg, max 800 mg)Standard of careStopped early due to higher mortality in TCZ patientsPB 15% vs SC 16%
Tleyjeh et al[121], MA9850TCZ (variable regimen)Standard of careMortality: TCZ: OR = 0.58 (0.51-0.66)TCZ: RR = 0.63 (0.38-1.06)
Gupta et al[106], OS3491TCZ (regimen not specified)Standard of careHospital mortality. TCZ: HR = 0.71 (95%CI: 0.56-0.92)TCZ 32.3% vs SC 31.1%
Somers et al[108], OS154TCZ (8 mg/kg, max 800 mg)Standard of careMortality. TCZ: HR = 0.54 (95%CI: 0.35-0.84)TCZ 54% vs SC 26%. Pneumonia 45% vs 20%. Bacteremia 14% vs 9%
Fisher et al[109], OS115TCZ (400 mg)Standard of care30 d mortality. TCZ: OR = 1.04 (95%CI: 0.27-3.75)TCZ 28.9% vs SC 25.7%
Biran et al[102], OS764TCZ (400 mg, 1-2 doses)Standard of careHospital mortality. TCZ: HR = 0.64 (95%CI: 0.47-0.87, P = 0.004)TCZ 17% vs SC 13%
Guaraldi et al[101], OS544TCZ (8 mg/kg, max 800 mg, 2 doses) (n = 179)Standard of careDeath/MV. TCZ: HR = 0.61 (95%CI: 0.4-0.92), P = 0.020TCZ 13% vs SC 4%
Rossotti et al[105], OS222TCZ (8 mg/kg, max 800 mg, 1-2 doses) (n = 74)Standard of careSurvival rate TCZ: HR = 2.004 (95%CI: 1.050-3.817), P = 0.035. Survival rate in critically ill patient. HR = 30.055 (95%CI: 1.420-636.284), P = 0.029TCZ 24.4%; SC: NA
Rojas-Marte et al[107], OS193TCZ (regimen not specified)Standard of careMortality TCZ: 52%, SC: 62%, P = 0.09. Mortality in non-ventilated patients: TCZ: 6.1%, SC: 26.5%, P = 0.024Bacteremia: TCZ 12.5% vs SC 23.7%. Fungemia: TCZ 4.2% vs SC 3.1%

One of the main concerns when using TCZ is the risk of superinfections. However, a higher incidence of superinfections in patients treated with TCZ has not been confirmed in critically ill COVID-19 patients (see Table 2). In the same way as TCZ, sarilumab administration has been related to series, clinical, analytical, and radiological improvement but the available data are scarce[117-120]. It has not shown benefit in comparative observational studies[121], but it has been shown in the aforementioned REMAP-CAP trial[116]. In most positive studies, TCZ is associated with corticosteroids (see Table 3), thus given the positive results described and the absence of significant side effects of this combination, it should be considered early in COVID-19 patients admitted to the ICU.

Table 3 Coronavirus disease 2019 patients treated with tocilizumab and corticosteroids.
Ref.
Tocilizumab group
Control
Salama et al[110], RCT80.3%87.5%
Rosas et al[113], RCT36.1%54.9%
Stone et al[90], RCT11%6%
Salvarani et al[111], RCT10%7.6%
Mariette et al[112], RCT33%61%
RECOVERY Collaborative Group[115], RCT82%82%
REMAP-CAP Investigators et al[116], RCT> 80%
Veiga et al[114], RCT69%73%
Gupta et al[189], observational18.7%12.6%
Somers et al[108], observational29%20%
Fisher et al[109], observational73.3%78.6%
Biran et al[102], observational46%42%
Guaraldi et al[101], observational30%17%
Rossotti et al[105], observationalNot reported
Rojas-Marte et al[107], observational43%33%
Janus kinase pathway inhibition: Ruloxitinib, bariticinib

Most viruses, SARS-CoV-2 included, enter cells through receptor-mediated endocytosis after binding its spike protein to the human ACE-2 receptor[122]. This endocytosis is mediated by clatrine and other mechanisms. AP2-associated protein kinase 1 (AAK1) and cycling G-associated kinase (GAK) regulates this process[123]. Disabling AAK1 might stop the virus’s entry into cells and the intracellular assembly of virus particles[124]. Janus kinase (JAK) inhibitors are biological agents that mainly inhibit type I/II cytokine receptors[125]. There are several JAK inhibitors such as fedratinib, tofacitinib, sunitinib, or erlotinib. Still, they have many secondary effects, which turns their use in COVID-19 patients controversial, but ruxolitinib and baricitinib may play a role in this setting. However, Food and Drug Administration recently raised a warning regarding treatment with JAK-inhibitors that we have to bear in mind before starting treatment: Increased thromboembolism risk or increased frequency of herpes zoster virus reactivation; pan-JAK inhibitors may repress some cytokines required for antiviral defense (IFN-α/β) or immune restoration (IL-2, IL-7)[126-128].

Baricitinib is an oral anti-JAK inhibitor, acting against JAK1 and JAK2, with less potency for JAK3, with an exceptionally high affinity for AAK1. It inhibits the JAK signal transducer and activator of the transcription (STAT) pathway[129]. Moreover, it can also inhibit the cyclin GAK, another regulator of endocytosis, so it has been suggested as a potential drug against SARS-CoV-2 due to its double effect: Decreasing both the immune response (inhibiting the proinflammatory signal of several cytokines, such as IL-6, IL-12, IL-23, and IFN-α) and interrupting the virus entry and assembly in the cells[130]. It is currently approved for rheumatoid arthritis[131]. Its advantages include once-a-day oral administration (either 2 mg or 4 mg), acceptable safety profile (can be used in combination with other treatments because of low plasma protein binding and minimum cytochrome P450 interactions), and the double mechanism of action[132]. There is certain reluctance about baricitinib due to the simultaneous inhibition of AAK1 and JAK, which can reduce IFN-α levels, leading to a worse immune response, as mentioned above[133]. A pilot study from Italy showed significantly improved clinical and laboratory parameters in 12 patients with mild to moderate COVID-19 pneumonia. None of them required admission to the ICU nor MV[134].

An RCT evaluated baricitinib plus remdesivir in hospitalized COVID-19 patients. The treatment group needed fewer days to recovery (7 vs 8 d, P = 0.03) and 30% higher odds of improvement in clinical status at day 15. Precisely, patients on NIV or HFNO needed significantly less time to recovery (10 vs 18 d) and had fewer serious adverse events (16% vs 21%, P = 0.03)[135]. In conclusion, baricitinib combines anti-inflammatory characteristics and antiviral activity, making it a strong candidate for future evaluation in RCT.

Ruxolitinib is another oral JAK-kinase inhibitor currently indicated for intermediate or high-risk myelofibrosis, polycythemia vera, hemophagocytic lymphohistiocytosis, or steroid-refractory graft-versus-host disease. Ruxolitinib reduces the high level of cytokine release associated with these diseases[136,137]. It blocks JAK kinase activity and impedes STAT activation, decreasing levels of inflammatory cytokines (such as IL-1β, IL-2, IL-5, IL-6, IL-7, IL-13, IL-15, and IFN-γ)[138]. Pharmacokinetically, ruxolitinib has rapid oral absorption and a half-life of approximately 3 h and reaches peak plasma concentrations[139].

A non-randomized clinical study conducted in 93 severe COVID-19 patients not requiring MV at baseline showed a significant improvement in survival rate (89.1% vs 57.1%, P = 0.0034), a reduction of the inflammatory response (absence of fever and a decrease of at least 30% in CRP levels; 87% vs 23%, P = 0.0001) and no significant adverse event in patients treated with half the approved dose of ruxolitinib for hematologic diseases plus corticosteroids[140]. Similar results were communicated by La Rosée et al[140], in his retrospective study performed in 14 patients receiving ruxolitinib (10 receiving NIV, 1 HFNO, and 1 MV); they used a COVID inflammation score to evaluate the systemic inflammation, watching a reduction by 42% and 58% achieved on day 5 and 7 of treatment.

Only one Chinese RCT studied the efficacy of ruxolitinib. No death (14.3% vs 0%, P = 0.232) or deterioration [need for NIV/MV: (29% vs 10%, P = 0.663)/(14.3% vs 0%, P = 0.232)] occurred in ruxolitinib group, but no statistically difference was found. Both groups received a similar proportion of corticosteroids and antivirals[141]. To summarize, ruxolitinib may play a role in those patients with hypoxemic COVID-19 pneumonia but not yet needing MV, attenuating the immune response and therefore may prevent the progression of lung damage, bearing in mind that an early administration could favor viral replication. There is no data in critically ill patients regarding JAK inhibitors to establish a strong recommendation but, maybe, baricitinib could be used in patients on NIV or HFNO who are also receiving remdesivir, in order to shorten the time to recovery.

Corticosteroids

Corticosteroids have been widely used for years in autoimmune diseases with great success. A cytokine storm[32], similar to the hemophagocytic syndrome, may develop in some severe COVID-19 patients. In this setting, immunosuppressive treatments may decrease this hyper-inflammatory state, and this is the rationale for use corticosteroids in SARS-CoV-2 infection. Corticosteroids are hormones that may change the transcription pattern of 20% of the human genome[142], and they act in virtually all immune cells[143]. They inhibit the migration of leukocytes to inflamed tissues, increasing migration from bone marrow to blood and decreasing programmed leukocyte death[144,145]. They also inhibit leukocyte reactive oxygen species secretion, increase anti-inflammatory cytokines like IL-10[146,147], and alter the maturation and differentiation of dendritic cells[148-150]. Corticosteroids modify natural killer (NK) cytolytic activity and monocyte activation[150].

The use of up 100 mg of prednisone or an equivalent dose, acts over cytosolic corticosteroids receptors (cGCR), and we call this the genomic pathway[151,152]. The complex glucocorticoid-cGCR has two actions: Transactivation, which means that the complex promotes anti-inflammatory transcription factors as IL-10 or annexin 1. The other action is transrepression that produces an inhibition of inflammatory transcription factors (IL-1, IL-2, IL-6, IL-8, prostaglandins, TNF-α, and IFN-γ). That modifications happen in hours and may take up to a few days[151].

If we use corticosteroid pulses (doses higher than 100 mg of prednisone), we reach the highest effect of the genomic pathway, but we also obtain additional effects by the “non-genomic pathway”[150]. The non-genomic pathway induces membrane dysfunction in all immune cells and delays the calcium and sodium channel flow through the membrane. This process decreases ATP production. Non-genomic effects induce the bounding to the membrane of glucocorticoid receptors in the T lymphocytes[151]. They also release the Src protein from the complex cGCR-multiprotein, generating anti-inflammatory effects. These mechanisms take effect in hours and are very useful in autoimmune diseases with high disease activity[151].

The effect of corticosteroids depends not only on the dose (as seen before) but also on the timing used. We can preferably use corticosteroids in three moments: The onset of acute lung injury, the initial phase of acute respiratory distress syndrome (ARDS), and when ARDS is refractory to conventional treatment[153-155]. Historically, many studies used corticosteroids for viral pneumonia (including influenza and SARS-CoV-1)[156-161], and ARDS[162-167], with different results. We found no benefit in viral infection, and only a few of these studies demonstrated good results of corticosteroids on mortality[162,166]. Based on these, some authors analyzed the effect of corticosteroids in COVID-19 (see Table 4). Early in the pandemic, initial recommendations were not to use or limit corticosteroids to concrete situations[168-171]. WHO even recommended not to use corticosteroids routinely in COVID-19 pneumonia[172,173]. They base these recommendations on previous bad results in the SARS and Middle East respiratory syndrome (MERS) infections with corticosteroids. Some months later, some observational studies based on the Chinese hospitals’ experience recommended using corticosteroids under certain conditions[174-176].

Table 4 Summary of studies using corticosteroids in coronavirus disease 2019.
Ref.
Patients
Treatment regimen
Population
Mortality2
ICU administration
In-hospital stay
Secondary infections
RECOVERY Collaborative Group et al[177], RCT11303DXM 6 mg daily × 10 dIn-hospitalDecrease 2.8% RR 0.83NSIncrease discharged 28 d (3.7%)NA
RECOVERY Collaborative Group et al[177], RCT1007DXM 6 mg daily × 10 dMVDecrease 12.1% RR 0.64NAIncreased discharged 28 d (9.7% RR 1.48)NA
Tomazini et al[176], RCT299DXM 20 mg × 5d + DXM 10 mg × 5dICU patientsDecrease 2.4% (alive or ventilator-free)NADXM 21.9% vs 29.1% standard. (7.9% vs 9.5% bacteremia)
Jeronimo et al[178], RCT416MPD (0.5 mg/kg twice daily) × 5dIn-hospitalNSNS (MV)NSNo significant differences
Dequin et al[179], RCT149HCT 200 mg daily × 7d then decrease dose × 7d (14 d)ICU patientsNSNSNA
Angus et al[180], RCT384HCT 50 or 100 mg/6 h × 7 dICU patients93% and 80% of superiority in organ support freeNSNA
Edalatifard et al[181], RCT68MPD 250 mg × 3 dIn-hospitalDecrease 37%No patients on MVDecrease 4.6 d2.9% (1 pt) in MPD vs 0% (0 pt) standard
Corral-Gudino et al[188], RCT185MPD 40 mg/12 h × 3 d, then MPD 20 mg/12 h × 3 dIn-hospitalDecrease 24% composite death, ICU Adm or NIVNSNA
Kim et al[186], MA49569Variable regimensICU patientsOR 0.54 (0.40-0.73)NANSNA
Van Paassen et al[187], MA20197Variable regimensIn- hospitalOR 0.72 (0.57-0.87)RR 0.71 (0.54-0. 97)NSNA

The Recovery trial[177] could demonstrate a mortality improvement with dexamethasone treatment in COVID-19 patients requiring oxygen supplementation, especially in those admitted to ICUs. This improvement does not remain in patients who do not need oxygen supplementation, worsening mortality in this subgroup.

From July to December 2020, several clinical trials demonstrated the benefits of corticosteroids on mortality in COVID-19 associated pneumonia[178-181]. Hydrocortisone, methylprednisolone, and dexamethasone are corticosteroids that demonstrated survival improvement used at a median dose for five to ten days. These corticosteroids at this dose demonstrated moderate mortality reductions. All studies showed that the mortality improvement was more significant in critical patients than in-hospital patients (see Table 4). Corticosteroids can also be used at a higher dose with methylprednisolone pulses for three days (250 mg for three days). One small clinical trial and some observational studies showed essential improvements in mortality using corticosteroid pulses[182-185]. Again using corticosteroid pulses, mortality improvement was more significant in the critical patient subgroup. This regimen (by the non-genomic pathway) showed better results than the median doses of corticosteroids for more extended periods in the few published results. If this regimen is significantly better than lower doses and more prolonged periods must be demonstrated in ongoing head-to-head clinical trials[186].

Progression to MV was lower in the corticosteroid arm in clinical trials and meta-analyses[187,188]. There was a non-significant trend to hyperglycemia and infections in the corticosteroid arm treatment (see Table 4). Results about viral shedding are controversial and different between studies, so we can’t extract conclusions. As a final recommendation, corticosteroids should be used in COVID-19 pneumonia requiring oxygen supplementation, including critically ill patients, as proven in the Recovery trial and data obtained with the corticosteroid pulses studies. The 6 mg daily dexamethasone for ten days is the most accepted regimen because it is proven in clinical trials. The 250 mg daily methylprednisolone regimen for three days may be considered as an alternative too.

Intravenous immunoglobulin and hyperimmune immunoglobulin

Intravenous immunoglobulin (IVIG) is a product derived from the plasma of thousands of donors. It contains primarily polyclonal immunoglobulin G [with two functional fragments, the F(ab)2 fragment, for antigen recognition, and the crystallizable fragment (Fc), for the activation of innate immune responses], with small amounts of immunoglobulin (Ig)A and IgM. IVIG provides temporary protection before being metabolized, requiring several doses over the disease course[189]. IVIG has been used to treat several immunodeficiencies, neurologic disorders, inflammatory and infectious conditions, such as pneumonia by influenza, SARS, and MERS[190].

The rationale for using IVIG in SARS-CoV-2 infection is a modulation of inflammation. The central mechanism of action of IVIG is the inactivation of phagocytes (neutrophils, monocytes, and macrophages) through FCyR. Moreover, it has a neutralizing effect by creating an antibodies-virus complex that prevents the binding of the virus to alveolar epithelial cells. Furthermore, it can also influence the process of lymphocyte differentiation and maturation[191,192].

Xie et al[193] conducted a retrospective study among 58 cases of severe or critically ill COVID-19 patients with lymphopenic immunophenotype (absolute lymphocyte count fell under 0.5 × 109/L), receiving IVIG (20 g/d), differentiating two groups: Those receiving IVIG early (< 48 h after admission) and after 48 h. There was a significant reduction in 28-d mortality (23% vs 57%, P = 0.009), need for MV (6.67% vs 32.14%, P = 0.0016) and length of stay (11 ± 1 d vs 1696 ± 16 d, P = 0.005) in the < 48 h group. However, a more recent RCT including 84 patients with severe COVID-19 (52 of which received IVIG at a dose of 400 mg/kg/d for three days plus standard care) showed no difference in terms of mortality nor need for MV or admission to the ICU[194]. Finally, an Iranian RCT including 59 patients who did not respond to initial treatments, showed a significantly lower in-hospital mortality (20% vs 48.3%, P = 0.025) in those patients (n = 30) receiving IVIG (20 g daily for three days)[195].

Taken together, the results of the studies show some limitations to attribute clinical improvement only to IVIG use (variations in previous/concomitants treatments, a small number of patients, or variations in dosage). So, in conclusion, we can’t make a statement recommending its use. Considering its overall safety profile, it may be a promising option at the early stage of severe COVID-19 disease. On the other hand, hyperimmune immunoglobulin (H-IG) is an IVIG obtained from patients with high antibody titers to specific pathogens. Its pharmacokinetic properties are similar to IVIG, suggesting that a single dose may be enough in an acute setting[196,197]. It has been used in previous coronavirus epidemics such as SARS1 in 2003, MERS in 2012, and influenza A[198]. H-IG was used at a dosage of 5 mL/kg with an antibodies neutralizing titer of 1:160, with an optimal administration within the first 7 d. One of its limitations is the generation of neutralizing antibodies in specific individuals who have passed an infection. Another limitation is that donor availability is limited. A recent Cochrane revision was conducted regarding convalescent plasma and H-IG including 98 ongoing studies[199].

Recently an Indian RCT included 464 moderate COVID-19 patients (PaO2/FiO2 between 200-300 mmHg or a respiratory rate higher than 24 rpm with SaO2 < 93% on room air), 235 of which received convalescent plasma (two doses of 200 mL separated 24 h): No difference was observed with the control group regarding the progression of disease or mortality[200]. Another RCT conducted in Wuhan involved 103 severe COVID-19 patients (44 on NIV or high-flow nasal cannula, 25 on MV or extra-corporeal membrane oxygenation), where 52 received convalescent plasma plus standard therapy, observed an improvement of the negative conversion rate of viral polymerase chain reaction (87.2% vs 37.5%, P < 0.001) but did not result in a statistically significant improvement in time to clinical improvement within 28 d or in 28-d mortality[201].

We have limited data regarding critically ill patients. A small case series involving 5 critically ill patients on MV treated with convalescent plasma between day 10 to 22 from admission observed an improvement in their clinical status [increased PaO2/FiO2, decreased Sequential Organ Failure Assessment (SOFA) score, and body temperature normalized][202]. Another case report involving 4 critically ill patients (who received 200-2400 mL of convalescent plasma ranging from day 11 to day 18 post-admission) observed lung lesions resolution and decreased SARS-CoV-2 viral load clinical improvement[203]. A summary of RCTs and observational studies, including critically ill patients addressing IVIG and H-IG on COVID-19, is available in Table 5. Therefore, there are not enough data to support the use of H-IG and controversial results on convalescent plasma, so we can’t establish a recommendation.

Table 5 Summary of randomized clinical trials and observational studies including critically ill patients addressing intravenous immunoglobulin and hyperimmune immunoglobulin on coronavirus disease 2019.
Ref.
Patients
Intervention
Comparison
Outcome
Xie et al[193], observationalSevere/critical pneumonia and. Lymphocyte count < 0.5 × 109/L (18.9% on MV, 13.8% on NIV/HFNC)IVIG (20 g/d)> 48 h after admission (n = 28) vs < 48 h after admission (n = 30)Reduction in 28-d mortality (23% vs 57%, P = 0.009), need for MV (6.67% vs 32.14%, P = 0.001) and LOS (11.5 ± 1.0 vs 16.9 ± 1.6 d, P = 0.005) in the < 48 h group
Tabarsi et al[194], RCTSevere pneumonia (36.9% on MV, 78.6% ICU-admitted)IVIG (400 mg/kg/24 h for 3 d) (n = 52)Standard care (n = 32)No difference in mortality (46.1% vs 43.7%, P = 0.83), need for MV (40.4% vs 31.2%, P = 0.39) or ICU admission (75% vs 84.4 %, P = 0.3)
Gharebaghi et al[195], RCTSevere pneumonia with persisting symptoms or need for supplementary oxygen to maintain SaO2 > 90% after 48 h of treatmentIVIG (20 g daily for three days) (n = 30)Standard care (n = 29) Lower in-hospital mortality (20% vs 48.3%, P = 0.022). Mortality. IVIG: OR = 0.003 (95%CI: 0.001-0.815, P = 0.042)
Agarwal et al[200], RCTModerate pneumoniaConvalescent plasma (200 mL, 2 doses) (n = 235)Standard care (n = 229)Disease progression or mortality: No difference
Li et al[201], RCTSevere/critical pneumonia (NIV/HFNO: 42.7%, MV/ECMO: 24.3%)Convalescent plasma (4-13 mL/kg) (n = 52)Standard care (n = 51)No improvement in time to clinical improvement within 28 d
Other potential therapies: Statins and T-lymphocyte restorative therapies

Statins: Statins are potent 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors that prevent the activation of Rho-kinase, and thus, gain cardiovascular protective effects that are low-density lipoprotein-cholesterol independent[204]. The existing published evidence suggests a potential benefit of statins[205,206], despite the higher risk profile of statin-users as opposed to non-users, with some discordant results[207,208].

Statins improve endothelial dysfunction through upregulation of ACE-2 and endothelial nitric oxide synthase, decrease endothelin-1 and reactive oxygen species, and decrease nuclear factor-kB activation as well as proinflammatory cytokine expression[204,209]. Statins might also lessen myocardium injury by increasing nitric oxide, improving coronary perfusion, and decreasing IL-6 synthesis[210-212]. Finally, we can obtain a potential reduction of acute coronary syndromes and cerebrovascular events (both increased in COVID-19 patients)[213,214].

If statins might benefit ARDS due to their pleiotropic properties, it has been evaluated before the current global pandemic. Two RCTs with rosuvastatin and simvastatin did not improve clinical outcomes in ARDS[215,216]. Similar findings were reported in a meta-analysis where stains did not have a clear net benefit among patients with acute lung injury or ARDS[217]. However, a sub-analysis of the HARP-2 trial (HMG-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction) observed in the subgroup of patients with hyperinflammatory phenotype a survival benefit of simvastatin that was not observed with rosuvastatin[218]. The presence in most cases of severe COVID-19 both, of hyperinflammation and endothelial dysfunction might theoretically justify why statin treatment showed a protective effect against the need for MV and ICU admission in COVID-19 patients[25,28,30,219]. Unfortunately, no studies seem to have explicitly focused on lipid-lowering agents in critically ill patients with COVID-19. The lack of prospective data on this subset of patients does not allow us to provide a recommendation. However, several ongoing clinical trials will give us evidence-based insights about statin efficacy in severe COVID-19 (NCT04486508; NCT04390074). Until then, the decision about continuation should be individualized.

T-lymphocyte restorative therapies: As mentioned before, the presence of hypercytokinemia with lymphopenia represents a biological signature of a pathogen uncontrolled damage in critically ill patients with COVID-19. NK cells and cytotoxic T cells can kill the virally infected cells, whereas the helper T lymphocytes adjust the total adaptive immune response. In this regard, the lymphopenic immunophenotype is considered a bad prognosis factor and targets novel therapies. Several T-lymphocyte restorative treatments as IL-7 or thymosin alpha are under evaluation. IL-7 is a pleiotropic cytokine essential for lymphocyte survival and expansion. Administration of IL-7 invariably increases circulating and tissue lymphocytes and has an excellent safety profile[220,221]. Several trials are evaluating its use among patients with severe COVID-19 (NCT04442178, NCT04379076, NCT04407689). A recent clinical series by Laterre et al[222] evaluated the compassionate use of IL-7 in 12 critically ill patients with COVID-19 and severe lymphopenia (defined as two consecutive absolute lymphocyte counts of less than 700/μL). An initial safety dose of 3 μg/kg was followed by a dose of 10 μg/kg by intramuscular injection twice a week for 2 wk. 13 patients with COVID-19 received standard-of-care treatment matched as a comparator control cohort. On day 30, secondary infections occurred in 7 patients (58%) in the IL-7 group compared with 11 (85%) in the control group; 30-d mortality was 42% vs 46%, respectively. IL-7 was associated with a restored lymphocyte count, with the IL-7 group having levels more than 2-fold higher than the control group without associated adverse effects noted in the intervention arm.

In a recent Chinese study, thymosin alpha-1 (Tα1), another lymphopoiesis-stimulating drug, was employed in two cohorts of critically ill patients with COVID-19[223]. Compared with the untreated group, Tα1 treatment significantly reduced the mortality of severe COVID-19 patients (11.1% vs 30%, P = 0.044). Interestingly, patients with counts of CD8+ T cells or CD4+ T cells in circulation less than 400/μL or 650/μL, respectively, gained more benefits from Tα1. Other drugs targeting lymphocyte apoptosis by suppressing PD1/PD-L1, like nivolumab, are also being studied as potential candidates for treatment COVID-19. Currently, several trials are analyzing the role of these novel drugs. Unfortunately, they only focus on mild and moderate forms of COVID-19.

DISCUSSION

Few treatments proposed in COVID-19 have been evaluated in patients critically ill with COVID-19, despite a high mortality rate (20%-40%)[224,225]. This fact makes it extremely difficult to establish degrees of recommendation regarding the different therapeutic options currently available. Therefore, new studies are needed to analyse the role of these and other novel treatments in this subset of patients. In this sense, future trials must employ a better design and careful selection criteria. It is critical not to consider all patients with severe forms of COVID-19 the same. Some of these patients (but not all) show specific hallmarks characterized by profound immunity alterations, hyperinflammatory states, and even severe endothelial dysfunction that favors progression to different degrees of organ failure. This triad (hyperinflammation, immune dysregulation, and endothelial dysfunction) in presence of organ failure is not restricted to COVID-19, and we can find it in sepsis, which would support the theory that severe COVID-19 is a form of viral sepsis. These alterations allow the classification of critically ill COVID-19 patients into different phenotypes[226-228]. Recently Chen et al[229], in a single-center study of critically ill patients with COVID-19, identified by a machine learning approach two phenotypes: One hyperinflammatory, characterized by elevated pro-inflammatory cytokines, higher SOFA score, and higher rates of complications and another hypo-inflammatory. Interestingly, corticosteroid therapy was associated with reduced 28-d mortality (HR = 0.45; 95%CI: 0.25-0.80; P = 0.0062) only in patients with the hyperinflammatory phenotype. These endotypes include clinical and biological characteristics and can constitute specific targets for better select specific therapies based on an individualized approach to treatment.

CONCLUSION

Likely many of the treatments above reviewed in this work might be helpful in specific subgroups of patients with certain clinical, analytical and biological characteristics, as occurs in other pathologies such as cancer, certain autoimmune diseases, or even sepsis. This approach, based on a personalized and precision medicine model, could help to better randomization of new clinical trials targeting the specific treatment of severe and critical forms of COVID-19.

ARTICLE HIGHLIGHTS
Research background

Although most people with coronavirus disease 2019 (COVID-19) have only mild or uncomplicated symptoms, 10%-15% requires hospitalization and oxygen therapy and, from the beginning, a large number of patients presented severe respiratory failure, needing mechanical ventilation (MV) and intensive care unit (ICU) admission. The lack of an available, effective treatment in this setting has led to a spate of treatment recommendations, which are not always backed by sufficient scientific evidence. Particular attention were paid to a presumed specific cytokine storm secondary to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, with a special effort to modulate the inflammatory response of these patients.

Research motivation

Two years after the onset of the pandemic, many questions remain unanswered, and we continue to search for the most appropriate treatment. This review aims to summarize the current evidence regarding the different immunomodulatory strategies tested in critically ill patients with COVID-19. Most of the main trials that have shown benefit of any immunomodulatory therapeutic agent against COVID-19 focus on hospitalized patients but not on critically ill patients. Furthermore, many of these studies consider ICU admission as a primary negative endpoint. Very few studies consider treatment in this setting (ICU) as a starting point, sometimes unavoidable, given that many patients with COVID-19 required admission to the ICU already in the first hours of their hospital admission. Therefore, there is a lack of information on the therapeutic approach in these patients.

Research objectives

To summarize the pathophysiology of SARS-CoV-2, including the normal and pathological inflammatory and immune responses that would justify the use of different immunomodulatory therapies in critically ill patients. To analyze the mechanism of action of the different immunomodulatory agents used against COVID-19. Review the scientific evidence collected so far and issue a recommendation for or against the use of each specific agent in this scenario.

Research methods

A comprehensive literature search was developed by using the keywords: “immunotherapy”, “immunosuppressives”, “haemophagocytic syndrome”, “inflammation”, “antimalarials”, “hydroxychloroquine”, “chloroquine”, “anakinra”, “canakinumab”, “tocilizumab”, “sarilumab”, “corticosteroids”, “dexamethasone”, “methylprednisolone”, “immunoglobulins or convalescent” “JAK inhibitors”, “cyclosporine”, “colchicine”, “statins”, “interleukin 7”, “tymosin”, “PD1 and PD-L1 blockers”. We restricted the search to: “SARS-CoV-2”, “COVID-19”, “severe COVID-19” and “treatment” to identify articles published in English from MEDLINE, PubMed, and The Cochrane Library (until January 2021). The authors reviewed the selected manuscripts and selected the most appropriate. Finally, we established a recommendation of the use of each treatment based on the level of evidence of the articles and documents reviewed. This recommendation was made based on the consensus of all the authors. We carried out the rest of the work methodology following the PRISMA recommendations.

Research results

Different recommendations regarding the use of these immunomodulatory agents (“antimalarials”, “hydroxychloroquine” “chloroquine”, “anakinra”, “canakinumab”, “tocilizumab”, “sarilumab”, “corticosteroids”, “dexamethasone”, “methylprednisolone”, “immunoglobulins or convalescent”, “JAK inhibitors”, “cyclosporine”, “colchicine”, “statins”, “interleukin 7”, “tymosin”, “PD1 and PD-L1 blockers”) were performed.

Research conclusions

Until then, although several promising therapies exist, only the use of corticosteroids and tocilizumab (or sarilumab in absence of this) has demonstrated evidence enough to recommend its use in critically ill patients with COVID-19. Probably other treatments of those analyzed could be beneficial in certain critical patients with COVID-19 if they were administered in a selective and personalized way.

Research perspectives

From this work, two simple and clear messages can be extracted that could guide the future therapeutic approach of severe forms of COVID-19: (1) The critically ill patient constitutes a special subgroup of patients that should be studied differently from other patients, considering the ICU as an initial and not a final stage in the course of the disease; and (2) It is a mistake to administer the same treatments to all patients. It is key to individualize these treatments based on the immunological and clinical phenotypes of each patient.

Footnotes

Provenance and peer review: Invited article; Externally peer reviewed

Peer-review model: Single blind

Corresponding Author’s Membership in Professional Societies: Sociedad española de Medicina Intensiva Crítica y Unidades Coronarias; Grupo de Trabajo en Enfermedades Infecciosas y Sepsis.

Specialty type: Critical care medicine

Country/Territory of origin: Spain

Peer-review report’s scientific quality classification

Grade A (Excellent): 0

Grade B (Very good): B

Grade C (Good): 0

Grade D (Fair): 0

Grade E (Poor): 0

P-Reviewer: Samadder S, India A-Editor: Yao QG S-Editor: Wang JJ L-Editor: A P-Editor: Wang JJ

References
1.  World Health Organization  WHO Director-General’s opening remarks at the media briefing on COVID-19 - 18 March 2020. [cited 13 April 2020]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---18-march-2020.  [PubMed]  [DOI]  [Cited in This Article: ]
2.  World Health Organization  WHO Coronavirus (COVID-19) Dashboard. [cited 28 January 2021]. Available from: https://covid19.who.int/.  [PubMed]  [DOI]  [Cited in This Article: ]
3.  Rodríguez A, Moreno G, Gómez J, Carbonell R, Picó-Plana E, Benavent Bofill C, Sánchez Parrilla R, Trefler S, Esteve Pitarch E, Canadell L, Teixido X, Claverias L, Bodí M; por el HJ23-COVID-19 working group;  Listado de Investigadores del HJ23-COVID-19 Working Group. Laboratorio clínico; Epidemiología y prevención de la infección nosocomial; Departamento de enfermería UCI; Farmacia clínica; Médicos UCI; UCI Data-Analitics. Severe infection due to the SARS-CoV-2 coronavirus: Experience of a tertiary hospital with COVID-19 patients during the 2020 pandemic. Med Intensiva (Engl Ed). 2020;44:525-533.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 26]  [Cited by in F6Publishing: 30]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
4.  Vidal-Cortés P, Del Río-Carbajo L, Nieto-Del Olmo J, Prol-Silva E, Tizón-Varela AI, Rodríguez-Vázquez A, Rodríguez-Rodríguez P, Díaz-López MD, Fernández-Ugidos P, Pérez-Veloso MA. COVID-19 and Acute Respiratory Distress Syndrome. Impact of corticosteroid treatment and predictors of poor outcome. Rev Esp Quimioter. 2021;34:33-43.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5]  [Cited by in F6Publishing: 5]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
5.  Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R, Iotti G, Latronico N, Lorini L, Merler S, Natalini G, Piatti A, Ranieri MV, Scandroglio AM, Storti E, Cecconi M, Pesenti A; COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323:1574-1581.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3537]  [Cited by in F6Publishing: 3733]  [Article Influence: 933.3]  [Reference Citation Analysis (0)]
6.  Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, Greninger AL, Pipavath S, Wurfel MM, Evans L, Kritek PA, West TE, Luks A, Gerbino A, Dale CR, Goldman JD, O'Mahony S, Mikacenic C. Covid-19 in Critically Ill Patients in the Seattle Region - Case Series. N Engl J Med. 2020;382:2012-2022.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1819]  [Cited by in F6Publishing: 1827]  [Article Influence: 456.8]  [Reference Citation Analysis (0)]
7.  Arentz M, Yim E, Klaff L, Lokhandwala S, Riedo FX, Chong M, Lee M. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. 2020;323:1612-1614.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1511]  [Cited by in F6Publishing: 1601]  [Article Influence: 400.3]  [Reference Citation Analysis (0)]
8.  Xie J, Wu W, Li S, Hu Y, Hu M, Li J, Yang Y, Huang T, Zheng K, Wang Y, Kang H, Huang Y, Jiang L, Zhang W, Zhong M, Sang L, Zheng X, Pan C, Zheng R, Li X, Tong Z, Qiu H, Du B. Clinical characteristics and outcomes of critically ill patients with novel coronavirus infectious disease (COVID-19) in China: a retrospective multicenter study. Intensive Care Med. 2020;46:1863-1872.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 86]  [Cited by in F6Publishing: 114]  [Article Influence: 28.5]  [Reference Citation Analysis (0)]
9.  Barrasa H, Rello J, Tejada S, Martín A, Balziskueta G, Vinuesa C, Fernández-Miret B, Villagra A, Vallejo A, San Sebastián A, Cabañes S, Iribarren S, Fonseca F, Maynar J; Alava COVID-19 Study Investigators. SARS-CoV-2 in Spanish Intensive Care Units: Early experience with 15-day survival in Vitoria. Anaesth Crit Care Pain Med. 2020;39:553-561.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 128]  [Cited by in F6Publishing: 146]  [Article Influence: 36.5]  [Reference Citation Analysis (0)]
10.  Ramírez P, Gordón M, Martín-Cerezuela M, Villarreal E, Sancho E, Padrós M, Frasquet J, Leyva G, Molina I, Barrios M, Gimeno S, Castellanos Á. Acute respiratory distress syndrome due to COVID-19. Clinical and prognostic features from a medical Critical Care Unit in Valencia, Spain. Med Intensiva (Engl Ed). 2021;45:27-34.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 19]  [Article Influence: 6.3]  [Reference Citation Analysis (0)]
11.  Bravata DM, Perkins AJ, Myers LJ, Arling G, Zhang Y, Zillich AJ, Reese L, Dysangco A, Agarwal R, Myers J, Austin C, Sexson A, Leonard SJ, Dev S, Keyhani S. Association of Intensive Care Unit Patient Load and Demand With Mortality Rates in US Department of Veterans Affairs Hospitals During the COVID-19 Pandemic. JAMA Netw Open. 2021;4:e2034266.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 221]  [Cited by in F6Publishing: 180]  [Article Influence: 60.0]  [Reference Citation Analysis (0)]
12.  Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, Cheng VC, Edwards KM, Gandhi R, Muller WJ, O'Horo JC, Shoham S, Murad MH, Mustafa RA, Sultan S, Falck-Ytter Y. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin Infect Dis. 2020;.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 424]  [Cited by in F6Publishing: 563]  [Article Influence: 140.8]  [Reference Citation Analysis (0)]
13.  Alhazzani W, Møller MH, Arabi YM, Loeb M, Gong MN, Fan E, Oczkowski S, Levy MM, Derde L, Dzierba A, Du B, Aboodi M, Wunsch H, Cecconi M, Koh Y, Chertow DS, Maitland K, Alshamsi F, Belley-Cote E, Greco M, Laundy M, Morgan JS, Kesecioglu J, McGeer A, Mermel L, Mammen MJ, Alexander PE, Arrington A, Centofanti JE, Citerio G, Baw B, Memish ZA, Hammond N, Hayden FG, Evans L, Rhodes A. Surviving Sepsis Campaign: guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Intensive Care Med. 2020;46:854-887.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1239]  [Cited by in F6Publishing: 1328]  [Article Influence: 332.0]  [Reference Citation Analysis (0)]
14.  Bai C, Chotirmall SH, Rello J, Alba GA, Ginns LC, Krishnan JA, Rogers R, Bendstrup E, Burgel PR, Chalmers JD, Chua A, Crothers KA, Duggal A, Kim YW, Laffey JG, Luna CM, Niederman MS, Raghu G, Ramirez JA, Riera J, Roca O, Tamae-Kakazu M, Torres A, Watkins RR, Barrecheguren M, Belliato M, Chami HA, Chen R, Cortes-Puentes GA, Delacruz C, Hayes MM, Heunks LMA, Holets SR, Hough CL, Jagpal S, Jeon K, Johkoh T, Lee MM, Liebler J, McElvaney GN, Moskowitz A, Oeckler RA, Ojanguren I, O'Regan A, Pletz MW, Rhee CK, Schultz MJ, Storti E, Strange C, Thomson CC, Torriani FJ, Wang X, Wuyts W, Xu T, Yang D, Zhang Z, Wilson KC. Updated guidance on the management of COVID-19: from an American Thoracic Society/European Respiratory Society coordinated International Task Force (29 July 2020). Eur Respir Rev. 2020;29.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 62]  [Cited by in F6Publishing: 67]  [Article Influence: 16.8]  [Reference Citation Analysis (0)]
15.  Díaz E, Amézaga Menéndez R, Vidal Cortés P, Escapa MG, Suberviola B, Serrano Lázaro A, Marcos Neira P, Quintana Díaz M, Catalán González M. [Pharmacological treatment of COVID-19: Narrative review of the Working Group in Infectious Diseases and Sepsis (GTEIS) and the Working Groups in Transfusions and Blood Products (GTTH)]. Med Intensiva (Engl Ed). 2021;45:104-121.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 9]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
16.  Kalil AC. Treating COVID-19-Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics. JAMA. 2020;323:1897-1898.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 302]  [Cited by in F6Publishing: 297]  [Article Influence: 74.3]  [Reference Citation Analysis (0)]
17.  Estella Á, Garnacho-Montero J. [From empiricism to scientific evidence in antiviral treatment in severe cases of coronavirus infection in times of epidemic]. Med Intensiva (Engl Ed). 2020;44:509-512.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 6]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
18.  Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020;39:405-407.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1169]  [Cited by in F6Publishing: 1083]  [Article Influence: 270.8]  [Reference Citation Analysis (0)]
19.  Sinha P, Matthay MA, Calfee CS. Is a "Cytokine Storm" Relevant to COVID-19? JAMA Intern Med. 2020;180:1152-1154.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 464]  [Cited by in F6Publishing: 498]  [Article Influence: 124.5]  [Reference Citation Analysis (0)]
20.  de la Rica R, Borges M, Gonzalez-Freire M. COVID-19: In the Eye of the Cytokine Storm. Front Immunol. 2020;11:558898.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 85]  [Cited by in F6Publishing: 86]  [Article Influence: 21.5]  [Reference Citation Analysis (0)]
21.  Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med. 2020;14:185-192.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1286]  [Cited by in F6Publishing: 1482]  [Article Influence: 370.5]  [Reference Citation Analysis (0)]
22.  Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5:562-569.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1933]  [Cited by in F6Publishing: 2120]  [Article Influence: 530.0]  [Reference Citation Analysis (0)]
23.  Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020;181:281-292.e6.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4743]  [Cited by in F6Publishing: 5917]  [Article Influence: 1479.3]  [Reference Citation Analysis (0)]
24.  Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L, Tai Y, Bai C, Gao T, Song J, Xia P, Dong J, Zhao J, Wang FS. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8:420-422.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 5228]  [Cited by in F6Publishing: 5645]  [Article Influence: 1411.3]  [Reference Citation Analysis (2)]
25.  Zeng Z, Yu H, Chen H, Qi W, Chen L, Chen G, Yan W, Chen T, Ning Q, Han M, Wu D. Longitudinal changes of inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 from Wuhan, China. Crit Care. 2020;24:525.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 120]  [Cited by in F6Publishing: 101]  [Article Influence: 25.3]  [Reference Citation Analysis (0)]
26.  Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W, Tian DS. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71:762-768.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2495]  [Cited by in F6Publishing: 3251]  [Article Influence: 812.8]  [Reference Citation Analysis (0)]
27.  Janssen NAF, Grondman I, de Nooijer AH, Boahen CK, Koeken VACM, Matzaraki V, Kumar V, He X, Kox M, Koenen HJPM, Smeets RL, Joosten I, Brüggemann RJM, Kouijzer IJE, van der Hoeven HG, Schouten JA, Frenzel T, Reijers MHE, Hoefsloot W, Dofferhoff ASM, van Apeldoorn MJ, Blaauw MJT, Veerman K, Maas C, Schoneveld AH, Hoefer IE, Derde LPG, van Deuren M, van der Meer JWM, van Crevel R, Giamarellos-Bourboulis EJ, Joosten LAB, van den Heuvel MM, Hoogerwerf J, de Mast Q, Pickkers P, Netea MG, van de Veerdonk FL. Dysregulated Innate and Adaptive Immune Responses Discriminate Disease Severity in COVID-19. J Infect Dis. 2021;223:1322-1333.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 36]  [Cited by in F6Publishing: 51]  [Article Influence: 17.0]  [Reference Citation Analysis (0)]
28.  García de Guadiana-Romualdo L, Calvo Nieves MD, Rodríguez Mulero MD, Calcerrada Alises I, Hernández Olivo M, Trapiello Fernández W, González Morales M, Bolado Jiménez C, Albaladejo-Otón MD, Fernández Ovalle H, Conesa Hernández A, Azpeleta Manrique E, Consuegra-Sánchez L, Nogales Martín L, Conesa Zamora P, Andaluz-Ojeda D. MR-proADM as marker of endotheliitis predicts COVID-19 severity. Eur J Clin Invest. 2021;51:e13511.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 32]  [Article Influence: 10.7]  [Reference Citation Analysis (0)]
29.  Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20:363-374.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3174]  [Cited by in F6Publishing: 2813]  [Article Influence: 703.3]  [Reference Citation Analysis (0)]
30.  García LF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol. 2020;11:1441.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 450]  [Cited by in F6Publishing: 457]  [Article Influence: 114.3]  [Reference Citation Analysis (0)]
31.  Boechat JL, Chora I, Morais A, Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology - Current perspectives. Pulmonology. 2021;27:423-437.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 134]  [Cited by in F6Publishing: 106]  [Article Influence: 35.3]  [Reference Citation Analysis (0)]
32.  Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033-1034.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6366]  [Cited by in F6Publishing: 6560]  [Article Influence: 1640.0]  [Reference Citation Analysis (0)]
33.  Remy KE, Mazer M, Striker DA, Ellebedy AH, Walton AH, Unsinger J, Blood TM, Mudd PA, Yi DJ, Mannion DA, Osborne DF, Martin RS, Anand NJ, Bosanquet JP, Blood J, Drewry AM, Caldwell CC, Turnbull IR, Brakenridge SC, Moldwawer LL, Hotchkiss RS. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight. 2020;5.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 241]  [Cited by in F6Publishing: 217]  [Article Influence: 54.3]  [Reference Citation Analysis (0)]
34.  Henry BM, Benoit SW, Vikse J, Berger BA, Pulvino C, Hoehn J, Rose J, Santos de Oliveira MH, Lippi G, Benoit JL. The anti-inflammatory cytokine response characterized by elevated interleukin-10 is a stronger predictor of severe disease and poor outcomes than the pro-inflammatory cytokine response in coronavirus disease 2019 (COVID-19). Clin Chem Lab Med. 2021;59:599-607.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 18]  [Cited by in F6Publishing: 31]  [Article Influence: 7.8]  [Reference Citation Analysis (0)]
35.  Monneret G, Benlyamani I, Gossez M, Bermejo-Martin JF, Martín-Fernandez M, Sesques P, Wallet F, Venet F. COVID-19: What type of cytokine storm are we dealing with? J Med Virol. 2021;93:197-198.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 9]  [Cited by in F6Publishing: 10]  [Article Influence: 2.5]  [Reference Citation Analysis (0)]
36.  Laing AG, Lorenc A, Del Molino Del Barrio I, Das A, Fish M, Monin L, Muñoz-Ruiz M, McKenzie DR, Hayday TS, Francos-Quijorna I, Kamdar S, Joseph M, Davies D, Davis R, Jennings A, Zlatareva I, Vantourout P, Wu Y, Sofra V, Cano F, Greco M, Theodoridis E, Freedman JD, Gee S, Chan JNE, Ryan S, Bugallo-Blanco E, Peterson P, Kisand K, Haljasmägi L, Chadli L, Moingeon P, Martinez L, Merrick B, Bisnauthsing K, Brooks K, Ibrahim MAA, Mason J, Lopez Gomez F, Babalola K, Abdul-Jawad S, Cason J, Mant C, Seow J, Graham C, Doores KJ, Di Rosa F, Edgeworth J, Shankar-Hari M, Hayday AC. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med. 2020;26:1623-1635.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 696]  [Cited by in F6Publishing: 644]  [Article Influence: 161.0]  [Reference Citation Analysis (0)]
37.  Giamarellos-Bourboulis EJ, Netea MG, Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, Damoraki G, Gkavogianni T, Adami ME, Katsaounou P, Ntaganou M, Kyriakopoulou M, Dimopoulos G, Koutsodimitropoulos I, Velissaris D, Koufargyris P, Karageorgos A, Katrini K, Lekakis V, Lupse M, Kotsaki A, Renieris G, Theodoulou D, Panou V, Koukaki E, Koulouris N, Gogos C, Koutsoukou A. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure. Cell Host Microbe. 2020;27:992-1000.e3.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1306]  [Cited by in F6Publishing: 1497]  [Article Influence: 374.3]  [Reference Citation Analysis (0)]
38.  Huang I, Pranata R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis. J Intensive Care. 2020;8:36.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 397]  [Cited by in F6Publishing: 382]  [Article Influence: 95.5]  [Reference Citation Analysis (0)]
39.  Wagner J, DuPont A, Larson S, Cash B, Farooq A. Absolute lymphocyte count is a prognostic marker in Covid-19: A retrospective cohort review. Int J Lab Hematol. 2020;42:761-765.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 52]  [Cited by in F6Publishing: 55]  [Article Influence: 13.8]  [Reference Citation Analysis (0)]
40.  Fathi N, Rezaei N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol Int. 2020;44:1792-1797.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 164]  [Cited by in F6Publishing: 199]  [Article Influence: 49.8]  [Reference Citation Analysis (0)]
41.  Qin S, Jiang Y, Wei X, Liu X, Guan J, Chen Y, Lu H, Qian J, Wang Z, Lin X. Dynamic changes in monocytes subsets in COVID-19 patients. Hum Immunol. 2021;82:170-176.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 38]  [Article Influence: 9.5]  [Reference Citation Analysis (0)]
42.  Bermejo-Martin JF, González-Rivera M, Almansa R, Micheloud D, Tedim AP, Domínguez-Gil M, Resino S, Martín-Fernández M, Ryan Murua P, Pérez-García F, Tamayo L, Lopez-Izquierdo R, Bustamante E, Aldecoa C, Gómez JM, Rico-Feijoo J, Orduña A, Méndez R, Fernández Natal I, Megías G, González-Estecha M, Carriedo D, Doncel C, Jorge N, Ortega A, de la Fuente A, Del Campo F, Fernández-Ratero JA, Trapiello W, González-Jiménez P, Ruiz G, Kelvin AA, Ostadgavahi AT, Oneizat R, Ruiz LM, Miguéns I, Gargallo E, Muñoz I, Pelegrin S, Martín S, García Olivares P, Cedeño JA, Ruiz Albi T, Puertas C, Berezo JÁ, Renedo G, Herrán R, Bustamante-Munguira J, Enríquez P, Cicuendez R, Blanco J, Abadia J, Gómez Barquero J, Mamolar N, Blanca-López N, Valdivia LJ, Fernández Caso B, Mantecón MÁ, Motos A, Fernandez-Barat L, Ferrer R, Barbé F, Torres A, Menéndez R, Eiros JM, Kelvin DJ. Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19. Crit Care. 2020;24:691.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 152]  [Cited by in F6Publishing: 168]  [Article Influence: 42.0]  [Reference Citation Analysis (0)]
43.  Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, Ntinopoulou M, Sertaridou E, Tsironidou V, Tsigalou C, Tektonidou M, Konstantinidis T, Papagoras C, Mitroulis I, Germanidis G, Lambris JD, Ritis K. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest. 2020;130:6151-6157.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 501]  [Cited by in F6Publishing: 550]  [Article Influence: 137.5]  [Reference Citation Analysis (0)]
44.  Java A, Apicelli AJ, Liszewski MK, Coler-Reilly A, Atkinson JP, Kim AH, Kulkarni HS. The complement system in COVID-19: friend and foe? JCI Insight. 2020;5.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 288]  [Cited by in F6Publishing: 242]  [Article Influence: 60.5]  [Reference Citation Analysis (0)]
45.  Touret F, de Lamballerie X. Of chloroquine and COVID-19. Antiviral Res. 2020;177:104762.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 383]  [Cited by in F6Publishing: 371]  [Article Influence: 92.8]  [Reference Citation Analysis (0)]
46.  Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020;55:105938.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 704]  [Cited by in F6Publishing: 662]  [Article Influence: 165.5]  [Reference Citation Analysis (0)]
47.  Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14:72-73.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1597]  [Cited by in F6Publishing: 1570]  [Article Influence: 392.5]  [Reference Citation Analysis (0)]
48.  Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L, Ling Y, Huang D, Song S, Zhang D, Qian Z, Li T, Shen Y, Lu H. A pilot study of hydroxychloroquine in the treatment of patients with common coronavirus disease-19 (COVID-19). J Zhejiang Univ (Med Sci). 2020;.  [PubMed]  [DOI]  [Cited in This Article: ]
49.  Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, Zhuang R, Hu B.   Efficacy of hydroxychloroquine in patients with COVID‐19: results of a randomized trial. 2020 Preprint. Available from: MedRxiv:2020.03.22.20040758.  [PubMed]  [DOI]  [Cited in This Article: ]
50.  Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, Tissot Dupont H, Honoré S, Colson P, Chabrière E, La Scola B, Rolain JM, Brouqui P, Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56:105949.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3242]  [Cited by in F6Publishing: 3227]  [Article Influence: 806.8]  [Reference Citation Analysis (0)]
51.  RECOVERY Collaborative Group; Horby P, Mafham M, Linsell L, Bell JL, Staplin N, Emberson JR, Wiselka M, Ustianowski A, Elmahi E, Prudon B, Whitehouse T, Felton T, Williams J, Faccenda J, Underwood J, Baillie JK, Chappell LC, Faust SN, Jaki T, Jeffery K, Lim WS, Montgomery A, Rowan K, Tarning J, Watson JA, White NJ, Juszczak E, Haynes R, Landray MJ. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med. 2020;383:2030-2040.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 842]  [Cited by in F6Publishing: 807]  [Article Influence: 201.8]  [Reference Citation Analysis (0)]
52.  WHO Solidarity Trial Consortium; Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, Abdool Karim Q, Alejandria MM, Hernández García C, Kieny MP, Malekzadeh R, Murthy S, Reddy KS, Roses Periago M, Abi Hanna P, Ader F, Al-Bader AM, Alhasawi A, Allum E, Alotaibi A, Alvarez-Moreno CA, Appadoo S, Asiri A, Aukrust P, Barratt-Due A, Bellani S, Branca M, Cappel-Porter HBC, Cerrato N, Chow TS, Como N, Eustace J, García PJ, Godbole S, Gotuzzo E, Griskevicius L, Hamra R, Hassan M, Hassany M, Hutton D, Irmansyah I, Jancoriene L, Kirwan J, Kumar S, Lennon P, Lopardo G, Lydon P, Magrini N, Maguire T, Manevska S, Manuel O, McGinty S, Medina MT, Mesa Rubio ML, Miranda-Montoya MC, Nel J, Nunes EP, Perola M, Portolés A, Rasmin MR, Raza A, Rees H, Reges PPS, Rogers CA, Salami K, Salvadori MI, Sinani N, Sterne JAC, Stevanovikj M, Tacconelli E, Tikkinen KAO, Trelle S, Zaid H, Røttingen JA, Swaminathan S. Repurposed Antiviral Drugs for Covid-19 - Interim WHO Solidarity Trial Results. N Engl J Med. 2021;384:497-511.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1601]  [Cited by in F6Publishing: 1675]  [Article Influence: 558.3]  [Reference Citation Analysis (0)]
53.  World Health Organization  Ongoing Living Update of COVID-19 Therapeutic Options: Summary of Evidence. [cited 30 March 2021]. Available from: https://iris.paho.org/bitstream/handle/10665.2/52719/PAHOIMSEIHCOVID-19210002_eng.pdf?sequence=23&msclkid=7d6c3734bc6911ec8d71f4fe20799b01.  [PubMed]  [DOI]  [Cited in This Article: ]
54.  Axfors C, Schmitt AM, Janiaud P, Van't Hooft J, Abd-Elsalam S, Abdo EF, Abella BS, Akram J, Amaravadi RK, Angus DC, Arabi YM, Azhar S, Baden LR, Baker AW, Belkhir L, Benfield T, Berrevoets MAH, Chen CP, Chen TC, Cheng SH, Cheng CY, Chung WS, Cohen YZ, Cowan LN, Dalgard O, de Almeida E Val FF, de Lacerda MVG, de Melo GC, Derde L, Dubee V, Elfakir A, Gordon AC, Hernandez-Cardenas CM, Hills T, Hoepelman AIM, Huang YW, Igau B, Jin R, Jurado-Camacho F, Khan KS, Kremsner PG, Kreuels B, Kuo CY, Le T, Lin YC, Lin WP, Lin TH, Lyngbakken MN, McArthur C, McVerry BJ, Meza-Meneses P, Monteiro WM, Morpeth SC, Mourad A, Mulligan MJ, Murthy S, Naggie S, Narayanasamy S, Nichol A, Novack LA, O'Brien SM, Okeke NL, Perez L, Perez-Padilla R, Perrin L, Remigio-Luna A, Rivera-Martinez NE, Rockhold FW, Rodriguez-Llamazares S, Rolfe R, Rosa R, Røsjø H, Sampaio VS, Seto TB, Shahzad M, Soliman S, Stout JE, Thirion-Romero I, Troxel AB, Tseng TY, Turner NA, Ulrich RJ, Walsh SR, Webb SA, Weehuizen JM, Velinova M, Wong HL, Wrenn R, Zampieri FG, Zhong W, Moher D, Goodman SN, Ioannidis JPA, Hemkens LG. Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19 from an international collaborative meta-analysis of randomized trials. Nat Commun. 2021;12:2349.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 186]  [Cited by in F6Publishing: 165]  [Article Influence: 55.0]  [Reference Citation Analysis (0)]
55.  COVID-19 RISK and Treatments (CORIST) Collaboration. Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: Findings from the observational multicentre Italian CORIST study. Eur J Intern Med. 2020;82:38-47.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 60]  [Cited by in F6Publishing: 73]  [Article Influence: 18.3]  [Reference Citation Analysis (0)]
56.  Schlesinger N, Firestein BL, Brunetti L. Colchicine in COVID-19: an Old Drug, New Use. Curr Pharmacol Rep. 2020;1-9.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 52]  [Cited by in F6Publishing: 73]  [Article Influence: 18.3]  [Reference Citation Analysis (0)]
57.  Salah HM, Mehta JL. Meta-analysis of the Effect of Colchicine on Mortality and Mechanical Ventilation in COVID-19. Am J Cardiol. 2021;145:170-172.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 19]  [Article Influence: 6.3]  [Reference Citation Analysis (0)]
58.  Scarsi M, Piantoni S, Colombo E, Airó P, Richini D, Miclini M, Bertasi V, Bianchi M, Bottone D, Civelli P, Cotelli MS, Damiolini E, Galbassini G, Gatta D, Ghirardelli ML, Magri R, Malamani P, Mendeni M, Molinari S, Morotti A, Salada L, Turla M, Vender A, Tincani A, Brucato A, Franceschini F, Furloni R, Andreoli L. Association between treatment with colchicine and improved survival in a single-centre cohort of adult hospitalised patients with COVID-19 pneumonia and acute respiratory distress syndrome. Ann Rheum Dis. 2020;79:1286-1289.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 112]  [Cited by in F6Publishing: 113]  [Article Influence: 28.3]  [Reference Citation Analysis (0)]
59.  Brunetti L, Diawara O, Tsai A, Firestein BL, Nahass RG, Poiani G, Schlesinger N. Colchicine to Weather the Cytokine Storm in Hospitalized Patients with COVID-19. J Clin Med. 2020;9.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 48]  [Cited by in F6Publishing: 53]  [Article Influence: 13.3]  [Reference Citation Analysis (0)]
60.  Deftereos SG, Giannopoulos G, Vrachatis DA, Siasos GD, Giotaki SG, Gargalianos P, Metallidis S, Sianos G, Baltagiannis S, Panagopoulos P, Dolianitis K, Randou E, Syrigos K, Kotanidou A, Koulouris NG, Milionis H, Sipsas N, Gogos C, Tsoukalas G, Olympios CD, Tsagalou E, Migdalis I, Gerakari S, Angelidis C, Alexopoulos D, Davlouros P, Hahalis G, Kanonidis I, Katritsis D, Kolettis T, Manolis AS, Michalis L, Naka KK, Pyrgakis VN, Toutouzas KP, Triposkiadis F, Tsioufis K, Vavouranakis E, Martinèz-Dolz L, Reimers B, Stefanini GG, Cleman M, Goudevenos J, Tsiodras S, Tousoulis D, Iliodromitis E, Mehran R, Dangas G, Stefanadis C; GRECCO-19 investigators. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory Biomarkers and Clinical Outcomes in Patients Hospitalized With Coronavirus Disease 2019: The GRECCO-19 Randomized Clinical Trial. JAMA Netw Open. 2020;3:e2013136.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 297]  [Cited by in F6Publishing: 299]  [Article Influence: 74.8]  [Reference Citation Analysis (0)]
61.  Randomised Evaluation of COVID-19 Therapy  RECOVERY trial closes recruitment to colchicine treatment for patients hospitalised with COVID-19. [cited 14 March 2021]. Available from: https://www.recoverytrial.net/news/recovery-trial-closes-recruitment-to-colchicine-treatment-for-patients-hospitalised-with-covid-19?msclkid=0a598f21bc6211ec8cc61eebaf60e78e.  [PubMed]  [DOI]  [Cited in This Article: ]
62.  Schoot TS, Kerckhoffs APM, Hilbrands LB, van Marum RJ. Immunosuppressive Drugs and COVID-19: A Review. Front Pharmacol. 2020;11:1333.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 84]  [Cited by in F6Publishing: 61]  [Article Influence: 15.3]  [Reference Citation Analysis (0)]
63.  Lai Q, Spoletini G, Bianco G, Graceffa D, Agnes S, Rossi M, Lerut J. SARS-CoV2 and immunosuppression: A double-edged sword. Transpl Infect Dis. 2020;22:e13404.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 19]  [Cited by in F6Publishing: 21]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
64.  Tanaka Y, Sato Y, Sasaki T. Suppression of coronavirus replication by cyclophilin inhibitors. Viruses. 2013;5:1250-1260.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 121]  [Cited by in F6Publishing: 127]  [Article Influence: 11.5]  [Reference Citation Analysis (0)]
65.  Alijotas-Reig J, Esteve-Valverde E, Belizna C, Selva-O'Callaghan A, Pardos-Gea J, Quintana A, Mekinian A, Anunciacion-Llunell A, Miró-Mur F. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev. 2020;19:102569.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 152]  [Cited by in F6Publishing: 146]  [Article Influence: 36.5]  [Reference Citation Analysis (0)]
66.  Hage R, Steinack C, Schuurmans MM. Calcineurin inhibitors revisited: A new paradigm for COVID-19? Braz J Infect Dis. 2020;24:365-367.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 17]  [Cited by in F6Publishing: 17]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
67.  Poulsen NN, von Brunn A, Hornum M, Blomberg Jensen M. Cyclosporine and COVID-19: Risk or favorable? Am J Transplant. 2020;20:2975-2982.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 32]  [Cited by in F6Publishing: 36]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
68.  Cour M, Ovize M, Argaud L. Cyclosporine A: a valid candidate to treat COVID-19 patients with acute respiratory failure? Crit Care. 2020;24:276.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 23]  [Cited by in F6Publishing: 25]  [Article Influence: 6.3]  [Reference Citation Analysis (0)]
69.  Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA, Cron RQ, Opal SM. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit Care Med. 2016;44:275-281.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 524]  [Cited by in F6Publishing: 605]  [Article Influence: 75.6]  [Reference Citation Analysis (0)]
70.  Schulert GS, Grom AA. Pathogenesis of macrophage activation syndrome and potential for cytokine- directed therapies. Annu Rev Med. 2015;66:145-159.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 228]  [Cited by in F6Publishing: 268]  [Article Influence: 26.8]  [Reference Citation Analysis (0)]
71.  Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford). 2019;58:5-17.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 112]  [Cited by in F6Publishing: 151]  [Article Influence: 30.2]  [Reference Citation Analysis (0)]
72.  Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846-848.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 2604]  [Cited by in F6Publishing: 3143]  [Article Influence: 785.8]  [Reference Citation Analysis (0)]
73.  Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054-1062.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 17476]  [Cited by in F6Publishing: 17738]  [Article Influence: 4434.5]  [Reference Citation Analysis (0)]
74.  CORIMUNO-19 Collaborative group. Effect of anakinra vs usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med. 2021;9:295-304.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 168]  [Cited by in F6Publishing: 182]  [Article Influence: 60.7]  [Reference Citation Analysis (0)]
75.  Cavalli G, De Luca G, Campochiaro C, Della-Torre E, Ripa M, Canetti D, Oltolini C, Castiglioni B, Tassan Din C, Boffini N, Tomelleri A, Farina N, Ruggeri A, Rovere-Querini P, Di Lucca G, Martinenghi S, Scotti R, Tresoldi M, Ciceri F, Landoni G, Zangrillo A, Scarpellini P, Dagna L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2:e325-e331.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 744]  [Cited by in F6Publishing: 703]  [Article Influence: 175.8]  [Reference Citation Analysis (0)]
76.  Huet T, Beaussier H, Voisin O, Jouveshomme S, Dauriat G, Lazareth I, Sacco E, Naccache JM, Bézie Y, Laplanche S, Le Berre A, Le Pavec J, Salmeron S, Emmerich J, Mourad JJ, Chatellier G, Hayem G. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2:e393-e400.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 408]  [Cited by in F6Publishing: 460]  [Article Influence: 115.0]  [Reference Citation Analysis (0)]
77.  Kooistra EJ, Waalders NJB, Grondman I, Janssen NAF, de Nooijer AH, Netea MG, van de Veerdonk FL, Ewalds E, van der Hoeven JG, Kox M, Pickkers P; RCI-COVID-19 Study Group. Anakinra treatment in critically ill COVID-19 patients: a prospective cohort study. Crit Care. 2020;24:688.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 64]  [Cited by in F6Publishing: 71]  [Article Influence: 17.8]  [Reference Citation Analysis (0)]
78.  Dimopoulos G, de Mast Q, Markou N, Theodorakopoulou M, Komnos A, Mouktaroudi M, Netea MG, Spyridopoulos T, Verheggen RJ, Hoogerwerf J, Lachana A, van de Veerdonk FL, Giamarellos-Bourboulis EJ. Favorable Anakinra Responses in Severe Covid-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis. Cell Host Microbe. 2020;28:117-123.e1.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 165]  [Cited by in F6Publishing: 175]  [Article Influence: 43.8]  [Reference Citation Analysis (0)]
79.  Rothman AM, Morton AC, Crossman DC; MRC-ILA Heart investigators. Canakinumab for Atherosclerotic Disease. N Engl J Med. 2018;378:197-198.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 12]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
80.  Ucciferri C, Auricchio A, Di Nicola M, Potere N, Abbate A, Cipollone F, Vecchiet J, Falasca K. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol. 2020;2:e457-ee458.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 85]  [Cited by in F6Publishing: 89]  [Article Influence: 22.3]  [Reference Citation Analysis (0)]
81.  Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1881]  [Cited by in F6Publishing: 2805]  [Article Influence: 280.5]  [Reference Citation Analysis (0)]
82.  Del Valle DM, Kim-Schulze S, Huang HH, Beckmann ND, Nirenberg S, Wang B, Lavin Y, Swartz TH, Madduri D, Stock A, Marron TU, Xie H, Patel M, Tuballes K, Van Oekelen O, Rahman A, Kovatch P, Aberg JA, Schadt E, Jagannath S, Mazumdar M, Charney AW, Firpo-Betancourt A, Mendu DR, Jhang J, Reich D, Sigel K, Cordon-Cardo C, Feldmann M, Parekh S, Merad M, Gnjatic S. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020;26:1636-1643.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1894]  [Cited by in F6Publishing: 1665]  [Article Influence: 416.3]  [Reference Citation Analysis (0)]
83.  Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, Men D, Huang Q, Liu Y, Yang B, Ding J, Li F. Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) Is Closely Correlated With Drastically Elevated Interleukin 6 Level in Critically Ill Patients With Coronavirus Disease 2019. Clin Infect Dis. 2020;71:1937-1942.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 429]  [Cited by in F6Publishing: 652]  [Article Influence: 163.0]  [Reference Citation Analysis (0)]
84.  Lin A, He ZB, Zhang S, Zhang JG, Zhang X, Yan WH. Early Risk Factors for the Duration of Severe Acute Respiratory Syndrome Coronavirus 2 Viral Positivity in Patients With Coronavirus Disease 2019. Clin Infect Dis. 2020;71:2061-2065.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 28]  [Cited by in F6Publishing: 36]  [Article Influence: 9.0]  [Reference Citation Analysis (0)]
85.  Brasen CL, Christensen H, Olsen DA, Kahns S, Andersen RF, Madsen JB, Lassen A, Kierkegaard H, Jensen A, Sydenham TV, Madsen JS, Møller JK, Brandslund I. Daily monitoring of viral load measured as SARS-CoV-2 antigen and RNA in blood, IL-6, CRP and complement C3d predicts outcome in patients hospitalized with COVID-19. Clin Chem Lab Med. 2021;59:1988-1997.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 14]  [Cited by in F6Publishing: 15]  [Article Influence: 5.0]  [Reference Citation Analysis (0)]
86.  Herold T, Jurinovic V, Arnreich C, Lipworth BJ, Hellmuth JC, von Bergwelt-Baildon M, Klein M, Weinberger T. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J Allergy Clin Immunol. 2020;146:128-136.e4.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 696]  [Cited by in F6Publishing: 669]  [Article Influence: 167.3]  [Reference Citation Analysis (0)]
87.  Zeng F, Huang Y, Guo Y, Yin M, Chen X, Xiao L, Deng G. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. Int J Infect Dis. 2020;96:467-474.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 259]  [Cited by in F6Publishing: 360]  [Article Influence: 90.0]  [Reference Citation Analysis (0)]
88.  Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, Hirayama AV, Mastroiani F, Turtle CJ, Harhay MO, Legrand M, Deutschman CS. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8:1233-1244.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 660]  [Cited by in F6Publishing: 602]  [Article Influence: 150.5]  [Reference Citation Analysis (0)]
89.  EMC  RoActemra 20mg/mL Concentrate for Solution for Infusion. [cited 28 March 2021]. Available from: https://www.medicines.org.uk/emc/product/6673.  [PubMed]  [DOI]  [Cited in This Article: ]
90.  Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS, Horick NK, Healy BC, Shah R, Bensaci AM, Woolley AE, Nikiforow S, Lin N, Sagar M, Schrager H, Huckins DS, Axelrod M, Pincus MD, Fleisher J, Sacks CA, Dougan M, North CM, Halvorsen YD, Thurber TK, Dagher Z, Scherer A, Wallwork RS, Kim AY, Schoenfeld S, Sen P, Neilan TG, Perugino CA, Unizony SH, Collier DS, Matza MA, Yinh JM, Bowman KA, Meyerowitz E, Zafar A, Drobni ZD, Bolster MB, Kohler M, D'Silva KM, Dau J, Lockwood MM, Cubbison C, Weber BN, Mansour MK; BACC Bay Tocilizumab Trial Investigators. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med. 2020;383:2333-2344.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 998]  [Cited by in F6Publishing: 977]  [Article Influence: 244.3]  [Reference Citation Analysis (0)]
91.  Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X, Zhang X, Pan A, Wei H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A. 2020;117:10970-10975.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1811]  [Cited by in F6Publishing: 1720]  [Article Influence: 430.0]  [Reference Citation Analysis (0)]
92.  Antony SJ, Davis MA, Davis MG, Almaghlouth NK, Guevara R, Omar F, Del Rey F, Hassan A, Arian MU, Antony N, Prakash BV. Early use of tocilizumab in the prevention of adult respiratory failure in SARS-CoV-2 infections and the utilization of interleukin-6 Levels in the management. J Med Virol. 2021;93:491-498.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 15]  [Article Influence: 3.8]  [Reference Citation Analysis (0)]
93.  Alattar R, Ibrahim TBH, Shaar SH, Abdalla S, Shukri K, Daghfal JN, Khatib MY, Aboukamar M, Abukhattab M, Alsoub HA, Almaslamani MA, Omrani AS. Tocilizumab for the treatment of severe coronavirus disease 2019. J Med Virol. 2020;92:2042-2049.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 156]  [Cited by in F6Publishing: 172]  [Article Influence: 43.0]  [Reference Citation Analysis (0)]
94.  Price CC, Altice FL, Shyr Y, Koff A, Pischel L, Goshua G, Azar MM, Mcmanus D, Chen SC, Gleeson SE, Britto CJ, Azmy V, Kaman K, Gaston DC, Davis M, Burrello T, Harris Z, Villanueva MS, Aoun-Barakat L, Kang I, Seropian S, Chupp G, Bucala R, Kaminski N, Lee AI, LoRusso PM, Topal JE, Dela Cruz C, Malinis M. Tocilizumab Treatment for Cytokine Release Syndrome in Hospitalized Patients With Coronavirus Disease 2019: Survival and Clinical Outcomes. Chest. 2020;158:1397-1408.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 115]  [Cited by in F6Publishing: 139]  [Article Influence: 34.8]  [Reference Citation Analysis (0)]
95.  Knorr JP, Colomy V, Mauriello CM, Ha S. Tocilizumab in patients with severe COVID-19: A single-center observational analysis. J Med Virol. 2020;92:2813-2820.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 29]  [Cited by in F6Publishing: 30]  [Article Influence: 7.5]  [Reference Citation Analysis (0)]
96.  Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F, Franceschini F, Airò P, Bazzani C, Beindorf EA, Berlendis M, Bezzi M, Bossini N, Castellano M, Cattaneo S, Cavazzana I, Contessi GB, Crippa M, Delbarba A, De Peri E, Faletti A, Filippini M, Frassi M, Gaggiotti M, Gorla R, Lanspa M, Lorenzotti S, Marino R, Maroldi R, Metra M, Matteelli A, Modina D, Moioli G, Montani G, Muiesan ML, Odolini S, Peli E, Pesenti S, Pezzoli MC, Pirola I, Pozzi A, Proto A, Rasulo FA, Renisi G, Ricci C, Rizzoni D, Romanelli G, Rossi M, Salvetti M, Scolari F, Signorini L, Taglietti M, Tomasoni G, Tomasoni LR, Turla F, Valsecchi A, Zani D, Zuccalà F, Zunica F, Focà E, Andreoli L, Latronico N. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 2020;19:102568.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 565]  [Cited by in F6Publishing: 545]  [Article Influence: 136.3]  [Reference Citation Analysis (0)]
97.  Jordan SC, Zakowski P, Tran HP, Smith EA, Gaultier C, Marks G, Zabner R, Lowenstein H, Oft J, Bluen B, Le C, Shane R, Ammerman N, Vo A, Chen P, Kumar S, Toyoda M, Ge S, Huang E. Compassionate Use of Tocilizumab for Treatment of SARS-CoV-2 Pneumonia. Clin Infect Dis. 2020;71:3168-3173.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 63]  [Cited by in F6Publishing: 63]  [Article Influence: 15.8]  [Reference Citation Analysis (0)]
98.  Colaneri M, Bogliolo L, Valsecchi P, Sacchi P, Zuccaro V, Brandolino F, Montecucco C, Mojoli F, Giusti EM, Bruno R, The Covid Irccs San Matteo Pavia Task Force. Tocilizumab for Treatment of Severe COVID-19 Patients: Preliminary Results from SMAtteo COvid19 REgistry (SMACORE). Microorganisms. 2020;8.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 170]  [Cited by in F6Publishing: 154]  [Article Influence: 38.5]  [Reference Citation Analysis (0)]
99.  Campochiaro C, Della-Torre E, Cavalli G, De Luca G, Ripa M, Boffini N, Tomelleri A, Baldissera E, Rovere-Querini P, Ruggeri A, Monti G, De Cobelli F, Zangrillo A, Tresoldi M, Castagna A, Dagna L; TOCI-RAF Study Group. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. Eur J Intern Med. 2020;76:43-49.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 298]  [Cited by in F6Publishing: 297]  [Article Influence: 74.3]  [Reference Citation Analysis (0)]
100.  Potere N, Di Nisio M, Cibelli D, Scurti R, Frattari A, Porreca E, Abbate A, Parruti G. Interleukin-6 receptor blockade with subcutaneous tocilizumab in severe COVID-19 pneumonia and hyperinflammation: a case-control study. Ann Rheum Dis. 2021;80:1-2.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 38]  [Cited by in F6Publishing: 44]  [Article Influence: 11.0]  [Reference Citation Analysis (0)]
101.  Guaraldi G, Meschiari M, Cozzi-Lepri A, Milic J, Tonelli R, Menozzi M, Franceschini E, Cuomo G, Orlando G, Borghi V, Santoro A, Di Gaetano M, Puzzolante C, Carli F, Bedini A, Corradi L, Fantini R, Castaniere I, Tabbì L, Girardis M, Tedeschi S, Giannella M, Bartoletti M, Pascale R, Dolci G, Brugioni L, Pietrangelo A, Cossarizza A, Pea F, Clini E, Salvarani C, Massari M, Viale PL, Mussini C. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol. 2020;2:e474-e484.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 604]  [Cited by in F6Publishing: 663]  [Article Influence: 165.8]  [Reference Citation Analysis (0)]
102.  Biran N, Ip A, Ahn J, Go RC, Wang S, Mathura S, Sinclaire BA, Bednarz U, Marafelias M, Hansen E, Siegel DS, Goy AH, Pecora AL, Sawczuk IS, Koniaris LS, Simwenyi M, Varga DW, Tank LK, Stein AA, Allusson V, Lin GS, Oser WF, Tuma RA, Reichman J, Brusco L Jr, Carpenter KL, Costanzo EJ, Vivona V, Goldberg SL. Tocilizumab among patients with COVID-19 in the intensive care unit: a multicentre observational study. Lancet Rheumatol. 2020;2:e603-e612.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 216]  [Cited by in F6Publishing: 201]  [Article Influence: 50.3]  [Reference Citation Analysis (0)]
103.  Klopfenstein T, Zayet S, Lohse A, Balblanc JC, Badie J, Royer PY, Toko L, Mezher C, Kadiane-Oussou NJ, Bossert M, Bozgan AM, Charpentier A, Roux MF, Contreras R, Mazurier I, Dussert P, Gendrin V, Conrozier T; HNF Hospital Tocilizumab multidisciplinary team. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect. 2020;50:397-400.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 172]  [Cited by in F6Publishing: 155]  [Article Influence: 38.8]  [Reference Citation Analysis (0)]
104.  Castelnovo L, Tamburello A, Lurati A, Zaccara E, Marrazza MG, Olivetti M, Mumoli N, Mastroiacovo D, Colombo D, Ricchiuti E, Vigano' P, Paola F, Mazzone A. Anti-IL6 treatment of serious COVID-19 disease: A monocentric retrospective experience. Medicine (Baltimore). 2021;100:e23582.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 39]  [Cited by in F6Publishing: 32]  [Article Influence: 10.7]  [Reference Citation Analysis (0)]
105.  Rossotti R, Travi G, Ughi N, Corradin M, Baiguera C, Fumagalli R, Bottiroli M, Mondino M, Merli M, Bellone A, Basile A, Ruggeri R, Colombo F, Moreno M, Pastori S, Perno CF, Tarsia P, Epis OM, Puoti M; Niguarda COVID-19 Working Group. Safety and efficacy of anti-il6-receptor tocilizumab use in severe and critical patients affected by coronavirus disease 2019: A comparative analysis. J Infect. 2020;81:e11-e17.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 76]  [Cited by in F6Publishing: 81]  [Article Influence: 20.3]  [Reference Citation Analysis (0)]
106.  Gupta S, Wang W, Hayek SS, Chan L, Mathews KS, Melamed ML, Brenner SK, Leonberg-Yoo A, Schenck EJ, Radbel J, Reiser J, Bansal A, Srivastava A, Zhou Y, Finkel D, Green A, Mallappallil M, Faugno AJ, Zhang J, Velez JCQ, Shaefi S, Parikh CR, Charytan DM, Athavale AM, Friedman AN, Redfern RE, Short SAP, Correa S, Pokharel KK, Admon AJ, Donnelly JP, Gershengorn HB, Douin DJ, Semler MW, Hernán MA, Leaf DE; STOP-COVID Investigators. Association Between Early Treatment With Tocilizumab and Mortality Among Critically Ill Patients With COVID-19. JAMA Intern Med. 2021;181:41-51.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 350]  [Cited by in F6Publishing: 331]  [Article Influence: 110.3]  [Reference Citation Analysis (0)]
107.  Rojas-Marte G, Khalid M, Mukhtar O, Hashmi AT, Waheed MA, Ehrlich S, Aslam A, Siddiqui S, Agarwal C, Malyshev Y, Henriquez-Felipe C, Sharma D, Sharma S, Chukwuka N, Rodriguez DC, Alliu S, Le J, Shani J. Outcomes in patients with severe COVID-19 disease treated with tocilizumab: a case-controlled study. QJM. 2020;113:546-550.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 101]  [Cited by in F6Publishing: 97]  [Article Influence: 24.3]  [Reference Citation Analysis (0)]
108.  Somers EC, Eschenauer GA, Troost JP, Golob JL, Gandhi TN, Wang L, Zhou N, Petty LA, Baang JH, Dillman NO, Frame D, Gregg KS, Kaul DR, Nagel J, Patel TS, Zhou S, Lauring AS, Hanauer DA, Martin E, Sharma P, Fung CM, Pogue JM. Tocilizumab for Treatment of Mechanically Ventilated Patients With COVID-19. Clin Infect Dis. 2021;73:e445-e454.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 202]  [Cited by in F6Publishing: 290]  [Article Influence: 96.7]  [Reference Citation Analysis (0)]
109.  Fisher MJ, Marcos Raymundo LA, Monteforte M, Taub EM, Go R. Tocilizumab in the treatment of critical COVID-19 pneumonia: A retrospective cohort study of mechanically ventilated patients. Int J Infect Dis. 2021;103:536-539.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 13]  [Cited by in F6Publishing: 11]  [Article Influence: 2.8]  [Reference Citation Analysis (0)]
110.  Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, Criner GJ, Kaplan-Lewis E, Baden R, Pandit L, Cameron ML, Garcia-Diaz J, Chávez V, Mekebeb-Reuter M, Lima de Menezes F, Shah R, González-Lara MF, Assman B, Freedman J, Mohan SV. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N Engl J Med. 2021;384:20-30.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 912]  [Cited by in F6Publishing: 862]  [Article Influence: 287.3]  [Reference Citation Analysis (0)]
111.  Salvarani C, Dolci G, Massari M, Merlo DF, Cavuto S, Savoldi L, Bruzzi P, Boni F, Braglia L, Turrà C, Ballerini PF, Sciascia R, Zammarchi L, Para O, Scotton PG, Inojosa WO, Ravagnani V, Salerno ND, Sainaghi PP, Brignone A, Codeluppi M, Teopompi E, Milesi M, Bertomoro P, Claudio N, Salio M, Falcone M, Cenderello G, Donghi L, Del Bono V, Colombelli PL, Angheben A, Passaro A, Secondo G, Pascale R, Piazza I, Facciolongo N, Costantini M; RCT-TCZ-COVID-19 Study Group. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Intern Med. 2021;181:24-31.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 474]  [Cited by in F6Publishing: 511]  [Article Influence: 170.3]  [Reference Citation Analysis (0)]
112.  Mariette X, Hermine O, Tharaux PL, Resche-Rigon M, Steg PG, Porcher R, Ravaud P. Effectiveness of Tocilizumab in Patients Hospitalized With COVID-19: A Follow-up of the CORIMUNO-TOCI-1 Randomized Clinical Trial. JAMA Intern Med. 2021;181:1241-1243.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 113]  [Cited by in F6Publishing: 83]  [Article Influence: 27.7]  [Reference Citation Analysis (0)]
113.  Rosas IO, Bräu N, Waters M, Go RC, Hunter BD, Bhagani S, Skiest D, Aziz MS, Cooper N, Douglas IS, Savic S, Youngstein T, Del Sorbo L, Cubillo Gracian A, De La Zerda DJ, Ustianowski A, Bao M, Dimonaco S, Graham E, Matharu B, Spotswood H, Tsai L, Malhotra A. Tocilizumab in Hospitalized Patients with Severe Covid-19 Pneumonia. N Engl J Med. 2021;384:1503-1516.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 661]  [Cited by in F6Publishing: 670]  [Article Influence: 223.3]  [Reference Citation Analysis (0)]
114.  Veiga VC, Prats JAGG, Farias DLC, Rosa RG, Dourado LK, Zampieri FG, Machado FR, Lopes RD, Berwanger O, Azevedo LCP, Avezum Á, Lisboa TC, Rojas SSO, Coelho JC, Leite RT, Carvalho JC, Andrade LEC, Sandes AF, Pintão MCT, Castro CG Jr, Santos SV, de Almeida TML, Costa AN, Gebara OCE, de Freitas FGR, Pacheco ES, Machado DJB, Martin J, Conceição FG, Siqueira SRR, Damiani LP, Ishihara LM, Schneider D, de Souza D, Cavalcanti AB, Scheinberg P; Coalition covid-19 Brazil VI Investigators. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial. BMJ. 2021;372:n84.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 276]  [Cited by in F6Publishing: 258]  [Article Influence: 86.0]  [Reference Citation Analysis (0)]
115.  RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397:1637-1645.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 946]  [Cited by in F6Publishing: 948]  [Article Influence: 316.0]  [Reference Citation Analysis (0)]
116.  REMAP-CAP Investigators, Gordon AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, Arabi YM, Annane D, Beane A, van Bentum-Puijk W, Berry LR, Bhimani Z, Bonten MJM, Bradbury CA, Brunkhorst FM, Buzgau A, Cheng AC, Detry MA, Duffy EJ, Estcourt LJ, Fitzgerald M, Goossens H, Haniffa R, Higgins AM, Hills TE, Horvat CM, Lamontagne F, Lawler PR, Leavis HL, Linstrum KM, Litton E, Lorenzi E, Marshall JC, Mayr FB, McAuley DF, McGlothlin A, McGuinness SP, McVerry BJ, Montgomery SK, Morpeth SC, Murthy S, Orr K, Parke RL, Parker JC, Patanwala AE, Pettilä V, Rademaker E, Santos MS, Saunders CT, Seymour CW, Shankar-Hari M, Sligl WI, Turgeon AF, Turner AM, van de Veerdonk FL, Zarychanski R, Green C, Lewis RJ, Angus DC, McArthur CJ, Berry S, Webb SA, Derde LPG. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. N Engl J Med. 2021;384:1491-1502.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1175]  [Cited by in F6Publishing: 1239]  [Article Influence: 413.0]  [Reference Citation Analysis (0)]
117.  Gremese E, Cingolani A, Bosello SL, Alivernini S, Tolusso B, Perniola S, Landi F, Pompili M, Murri R, Santoliquido A, Garcovich M, Sali M, De Pascale G, Gabrielli M, Biscetti F, Montalto M, Tosoni A, Gambassi G, Rapaccini GL, Iaconelli A, Zileri Del Verme L, Petricca L, Fedele AL, Lizzio MM, Tamburrini E, Natalello G, Gigante L, Bruno D, Verardi L, Taddei E, Calabrese A, Lombardi F, Bernabei R, Cauda R, Franceschi F, Landolfi R, Richeldi L, Sanguinetti M, Fantoni M, Antonelli M, Gasbarrini A; GEMELLI AGAINST COVID-19 Group. Sarilumab use in severe SARS-CoV-2 pneumonia. EClinicalMedicine. 2020;27:100553.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 55]  [Cited by in F6Publishing: 55]  [Article Influence: 13.8]  [Reference Citation Analysis (0)]
118.  Sinha P, Mostaghim A, Bielick CG, McLaughlin A, Hamer DH, Wetzler LM, Bhadelia N, Fagan MA, Linas BP, Assoumou SA, Ieong MH, Lin NH, Cooper ER, Brade KD, White LF, Barlam TF, Sagar M; Boston Medical Center Covid-19 Treatment Panel. Early administration of interleukin-6 inhibitors for patients with severe COVID-19 disease is associated with decreased intubation, reduced mortality, and increased discharge. Int J Infect Dis. 2020;99:28-33.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 49]  [Cited by in F6Publishing: 49]  [Article Influence: 12.3]  [Reference Citation Analysis (0)]
119.  Montesarchio V, Parrela R, Iommelli C, Bianco A, Manzillo E, Fraganza F, Palumbo C, Rea G, Murino P, De Rosa R, Atripaldi L, D'Abbraccio M, Curvietto M, Mallardo D, Celentano E, Grimaldi AM, Palla M, Trojaniello C, Vitale MG, Million-Weaver SL, Ascierto PA. Outcomes and biomarker analyses among patients with COVID-19 treated with interleukin 6 (IL-6) receptor antagonist sarilumab at a single institution in Italy. J Immunother Cancer. 2020;8.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 63]  [Cited by in F6Publishing: 51]  [Article Influence: 12.8]  [Reference Citation Analysis (0)]
120.  Della-Torre E, Campochiaro C, Cavalli G, De Luca G, Napolitano A, La Marca S, Boffini N, Da Prat V, Di Terlizzi G, Lanzillotta M, Rovere Querini P, Ruggeri A, Landoni G, Tresoldi M, Ciceri F, Zangrillo A, De Cobelli F, Dagna L; SARI-RAF Study Group;  SARI-RAF Study Group members. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: an open-label cohort study. Ann Rheum Dis. 2020;79:1277-1285.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 182]  [Cited by in F6Publishing: 178]  [Article Influence: 44.5]  [Reference Citation Analysis (0)]
121.  Tleyjeh IM, Kashour Z, Damlaj M, Riaz M, Tlayjeh H, Altannir M, Altannir Y, Al-Tannir M, Tleyjeh R, Hassett L, Kashour T. Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis. Clin Microbiol Infect. 2021;27:215-227.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 135]  [Cited by in F6Publishing: 130]  [Article Influence: 43.3]  [Reference Citation Analysis (0)]
122.  Magro G. COVID-19: Review on latest available drugs and therapies against SARS-CoV-2. Coagulation and inflammation cross-talking. Virus Res. 2020;286:198070.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 102]  [Cited by in F6Publishing: 93]  [Article Influence: 23.3]  [Reference Citation Analysis (0)]
123.  Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, Walzer T, François B, Sève P. Should we stimulate or suppress immune responses in COVID-19? Autoimmun Rev. 2020;19:102567.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 514]  [Cited by in F6Publishing: 447]  [Article Influence: 111.8]  [Reference Citation Analysis (0)]
124.  Satarker S, Tom AA, Shaji RA, Alosious A, Luvis M, Nampoothiri M. JAK-STAT Pathway Inhibition and their Implications in COVID-19 Therapy. Postgrad Med. 2021;133:489-507.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 91]  [Cited by in F6Publishing: 91]  [Article Influence: 30.3]  [Reference Citation Analysis (0)]
125.  Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20:400-402.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 726]  [Cited by in F6Publishing: 749]  [Article Influence: 187.3]  [Reference Citation Analysis (0)]
126.  Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Rawling M, Savory E, Stebbing J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395:e30-e31.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 960]  [Cited by in F6Publishing: 950]  [Article Influence: 237.5]  [Reference Citation Analysis (0)]
127.  Favalli EG, Biggioggero M, Maioli G, Caporali R. Baricitinib for COVID-19: a suitable treatment? Lancet Infect Dis. 2020;20:1012-1013.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 143]  [Cited by in F6Publishing: 158]  [Article Influence: 39.5]  [Reference Citation Analysis (0)]
128.  Zhang X, Zhang Y, Qiao W, Zhang J, Qi Z. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19. Int Immunopharmacol. 2020;86:106749.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 127]  [Cited by in F6Publishing: 101]  [Article Influence: 25.3]  [Reference Citation Analysis (0)]
129.  Seif F, Aazami H, Khoshmirsafa M, Kamali M, Mohsenzadegan M, Pornour M, Mansouri D. JAK Inhibition as a New Treatment Strategy for Patients with COVID-19. Int Arch Allergy Immunol. 2020;181:467-475.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 106]  [Cited by in F6Publishing: 125]  [Article Influence: 31.3]  [Reference Citation Analysis (0)]
130.  Bronte V, Ugel S, Tinazzi E, Vella A, De Sanctis F, Canè S, Batani V, Trovato R, Fiore A, Petrova V, Hofer F, Barouni RM, Musiu C, Caligola S, Pinton L, Torroni L, Polati E, Donadello K, Friso S, Pizzolo F, Iezzi M, Facciotti F, Pelicci PG, Righetti D, Bazzoni P, Rampudda M, Comel A, Mosaner W, Lunardi C, Olivieri O. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. J Clin Invest. 2020;130:6409-6416.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 136]  [Cited by in F6Publishing: 199]  [Article Influence: 49.8]  [Reference Citation Analysis (0)]
131.  Kubo S, Nakayamada S, Tanaka Y. Baricitinib for the treatment of rheumatoid arthritis and systemic lupus erythematosus: a 2019 update. Expert Rev Clin Immunol. 2019;15:693-700.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 19]  [Cited by in F6Publishing: 26]  [Article Influence: 5.2]  [Reference Citation Analysis (0)]
132.  Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X, Zeng X, Zhang S. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 812]  [Cited by in F6Publishing: 823]  [Article Influence: 205.8]  [Reference Citation Analysis (0)]
133.  Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbione P, Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect. 2020;81:318-356.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 317]  [Cited by in F6Publishing: 300]  [Article Influence: 75.0]  [Reference Citation Analysis (0)]
134.  Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, Marconi VC, Ruiz-Palacios GM, Hsieh L, Kline S, Tapson V, Iovine NM, Jain MK, Sweeney DA, El Sahly HM, Branche AR, Regalado Pineda J, Lye DC, Sandkovsky U, Luetkemeyer AF, Cohen SH, Finberg RW, Jackson PEH, Taiwo B, Paules CI, Arguinchona H, Erdmann N, Ahuja N, Frank M, Oh MD, Kim ES, Tan SY, Mularski RA, Nielsen H, Ponce PO, Taylor BS, Larson L, Rouphael NG, Saklawi Y, Cantos VD, Ko ER, Engemann JJ, Amin AN, Watanabe M, Billings J, Elie MC, Davey RT, Burgess TH, Ferreira J, Green M, Makowski M, Cardoso A, de Bono S, Bonnett T, Proschan M, Deye GA, Dempsey W, Nayak SU, Dodd LE, Beigel JH; ACTT-2 Study Group Members. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med. 2021;384:795-807.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1159]  [Cited by in F6Publishing: 1252]  [Article Influence: 417.3]  [Reference Citation Analysis (1)]
135.  Rizk JG, Kalantar-Zadeh K, Mehra MR, Lavie CJ, Rizk Y, Forthal DN. Pharmaco-Immunomodulatory Therapy in COVID-19. Drugs. 2020;80:1267-1292.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 150]  [Cited by in F6Publishing: 171]  [Article Influence: 42.8]  [Reference Citation Analysis (0)]
136.  Yeleswaram S, Smith P, Burn T, Covington M, Juvekar A, Li Y, Squier P, Langmuir P. Inhibition of cytokine signaling by ruxolitinib and implications for COVID-19 treatment. Clin Immunol. 2020;218:108517.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 67]  [Cited by in F6Publishing: 61]  [Article Influence: 15.3]  [Reference Citation Analysis (0)]
137.  Goker Bagca B, Biray Avci C. The potential of JAK/STAT pathway inhibition by ruxolitinib in the treatment of COVID-19. Cytokine Growth Factor Rev. 2020;54:51-62.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 74]  [Cited by in F6Publishing: 67]  [Article Influence: 16.8]  [Reference Citation Analysis (0)]
138.  Shi JG, Chen X, McGee RF, Landman RR, Emm T, Lo Y, Scherle PA, Punwani NG, Williams WV, Yeleswaram S. The pharmacokinetics, pharmacodynamics, and safety of orally dosed INCB018424 phosphate in healthy volunteers. J Clin Pharmacol. 2011;51:1644-1654.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 112]  [Cited by in F6Publishing: 118]  [Article Influence: 9.1]  [Reference Citation Analysis (0)]
139.  D'Alessio A, Del Poggio P, Bracchi F, Cesana G, Sertori N, Di Mauro D, Fargnoli A, Motta M, Giussani C, Moro P, Vitale G, Giacomini M, Borra G. Low-dose ruxolitinib plus steroid in severe SARS-CoV-2 pneumonia. Leukemia. 2021;35:635-638.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 26]  [Cited by in F6Publishing: 21]  [Article Influence: 7.0]  [Reference Citation Analysis (0)]
140.  La Rosée F, Bremer HC, Gehrke I, Kehr A, Hochhaus A, Birndt S, Fellhauer M, Henkes M, Kumle B, Russo SG, La Rosée P. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia. 2020;34:1805-1815.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 173]  [Cited by in F6Publishing: 163]  [Article Influence: 40.8]  [Reference Citation Analysis (0)]
141.  Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, Huang L, Meng F, Wang N, Zhou X, Luo H, Mao Z, Chen X, Xie J, Liu J, Cheng H, Zhao J, Huang G, Wang W, Zhou J. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol. 2020;146:137-146.e3.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 344]  [Cited by in F6Publishing: 326]  [Article Influence: 81.5]  [Reference Citation Analysis (0)]
142.  Buttgereit F. Glucocorticoids: surprising new findings on their mechanisms of actions. Ann Rheum Dis. 2021;80:137-139.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 4]  [Article Influence: 1.0]  [Reference Citation Analysis (0)]
143.  Cavalcanti DM, Lotufo CM, Borelli P, Ferreira ZS, Markus RP, Farsky SH. Endogenous glucocorticoids control neutrophil mobilization from bone marrow to blood and tissues in non-inflammatory conditions. Br J Pharmacol. 2007;152:1291-1300.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 53]  [Cited by in F6Publishing: 42]  [Article Influence: 2.5]  [Reference Citation Analysis (0)]
144.  Liles WC, Dale DC, Klebanoff SJ. Glucocorticoids inhibit apoptosis of human neutrophils. Blood. 1995;86:3181-3188.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6]  [Cited by in F6Publishing: 6]  [Article Influence: 0.2]  [Reference Citation Analysis (0)]
145.  Dandona P, Mohanty P, Hamouda W, Aljada A, Kumbkarni Y, Garg R. Effect of dexamethasone on reactive oxygen species generation by leukocytes and plasma interleukin-10 concentrations: a pharmacodynamic study. Clin Pharmacol Ther. 1999;66:58-65.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 50]  [Cited by in F6Publishing: 51]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
146.  Llewellyn-Jones CG, Hill SL, Stockley RA. Effect of fluticasone propionate on neutrophil chemotaxis, superoxide generation, and extracellular proteolytic activity in vitro. Thorax. 1994;49:207-212.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 43]  [Cited by in F6Publishing: 45]  [Article Influence: 1.5]  [Reference Citation Analysis (0)]
147.  Rozkova D, Horvath R, Bartunkova J, Spisek R. Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin Immunol. 2006;120:260-271.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 109]  [Cited by in F6Publishing: 110]  [Article Influence: 6.1]  [Reference Citation Analysis (0)]
148.  Piemonti L, Monti P, Allavena P, Sironi M, Soldini L, Leone BE, Socci C, Di Carlo V. Glucocorticoids affect human dendritic cell differentiation and maturation. J Immunol. 1999;162:6473-6481.  [PubMed]  [DOI]  [Cited in This Article: ]
149.  Zaza G, Leventhal J, Signorini L, Gambaro G, Cravedi P. Effects of Antirejection Drugs on Innate Immune Cells After Kidney Transplantation. Front Immunol. 2019;10:2978.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 33]  [Article Influence: 6.6]  [Reference Citation Analysis (0)]
150.  Stahn C, Buttgereit F. Genomic and nongenomic effects of glucocorticoids. Nat Clin Pract Rheumatol. 2008;4:525-533.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 349]  [Cited by in F6Publishing: 385]  [Article Influence: 24.1]  [Reference Citation Analysis (0)]
151.  Ruiz-Irastorza G, Danza A, Khamashta M. Glucocorticoid use and abuse in SLE. Rheumatology (Oxford). 2012;51:1145-1153.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 144]  [Cited by in F6Publishing: 158]  [Article Influence: 13.2]  [Reference Citation Analysis (0)]
152.  Roujeau JC. Pulse glucocorticoid therapy. The 'big shot' revisited. Arch Dermatol. 1996;132:1499-1502.  [PubMed]  [DOI]  [Cited in This Article: ]
153.  Meduri GU, Chrousos GP. Effectiveness of prolonged glucocorticoid treatment in acute respiratory distress syndrome: the right drug, the right way? Crit Care Med. 2006;34:236-238.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 14]  [Cited by in F6Publishing: 15]  [Article Influence: 0.8]  [Reference Citation Analysis (0)]
154.  Luce JM, Montgomery AB, Marks JD, Turner J, Metz CA, Murray JF. Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am Rev Respir Dis. 1988;138:62-68.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 366]  [Cited by in F6Publishing: 316]  [Article Influence: 8.8]  [Reference Citation Analysis (0)]
155.  Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, Thompson BT, Ancukiewicz M; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med. 2006;354:1671-1684.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1006]  [Cited by in F6Publishing: 957]  [Article Influence: 53.2]  [Reference Citation Analysis (0)]
156.  Moreno G, Rodríguez A, Reyes LF, Gomez J, Sole-Violan J, Díaz E, Bodí M, Trefler S, Guardiola J, Yébenes JC, Soriano A, Garnacho-Montero J, Socias L, Del Valle Ortíz M, Correig E, Marín-Corral J, Vallverdú-Vidal M, Restrepo MI, Torres A, Martín-Loeches I; GETGAG Study Group. Corticosteroid treatment in critically ill patients with severe influenza pneumonia: a propensity score matching study. Intensive Care Med. 2018;44:1470-1482.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 98]  [Cited by in F6Publishing: 111]  [Article Influence: 18.5]  [Reference Citation Analysis (0)]
157.  Cao B, Gao H, Zhou B, Deng X, Hu C, Deng C, Lu H, Li Y, Gan J, Liu J, Li H, Zhang Y, Yang Y, Fang Q, Shen Y, Gu Q, Zhou X, Zhao W, Pu Z, Chen L, Sun B, Liu X, Hamilton CD, Li L. Adjuvant Corticosteroid Treatment in Adults With Influenza A (H7N9) Viral Pneumonia. Crit Care Med. 2016;44:e318-e328.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 102]  [Cited by in F6Publishing: 115]  [Article Influence: 14.4]  [Reference Citation Analysis (0)]
158.  Li H, Yang SG, Gu L, Zhang Y, Yan XX, Liang ZA, Zhang W, Jia HY, Chen W, Liu M, Yu KJ, Xue CX, Hu K, Zou Q, Li LJ, Cao B, Wang C; National Influenza A(H1N1)pdm09 Clinical Investigation Group of China. Effect of low-to-moderate-dose corticosteroids on mortality of hospitalized adolescents and adults with influenza A(H1N1)pdm09 viral pneumonia. Influenza Other Respir Viruses. 2017;11:345-354.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 100]  [Cited by in F6Publishing: 109]  [Article Influence: 15.6]  [Reference Citation Analysis (0)]
159.  Brun-Buisson C, Richard JC, Mercat A, Thiébaut AC, Brochard L; REVA-SRLF A/H1N1v 2009 Registry Group. Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndrome. Am J Respir Crit Care Med. 2011;183:1200-1206.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 249]  [Cited by in F6Publishing: 248]  [Article Influence: 19.1]  [Reference Citation Analysis (0)]
160.  Diaz E, Martin-Loeches I, Canadell L, Vidaur L, Suarez D, Socias L, Estella A, Gil Rueda B, Guerrero JE, Valverdú-Vidal M, Vergara JC, López-Pueyo MJ, Magret M, Recio T, López D, Rello J, Rodriguez A; H1N1 SEMICYUC-CIBERES-REIPI Working Group (GETGAG). Corticosteroid therapy in patients with primary viral pneumonia due to pandemic (H1N1) 2009 influenza. J Infect. 2012;64:311-318.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 43]  [Cited by in F6Publishing: 51]  [Article Influence: 4.3]  [Reference Citation Analysis (0)]
161.  Viasus D, Paño-Pardo JR, Cordero E, Campins A, López-Medrano F, Villoslada A, Fariñas MC, Moreno A, Rodríguez-Baño J, Oteo JA, Martínez-Montauti J, Torre-Cisneros J, Segura F, Carratalà J; Novel Influenza A (H1N1) Study Group, Spanish Network for Research in Infectious Diseases. Effect of immunomodulatory therapies in patients with pandemic influenza A (H1N1) 2009 complicated by pneumonia. J Infect. 2011;62:193-199.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 56]  [Cited by in F6Publishing: 60]  [Article Influence: 4.6]  [Reference Citation Analysis (0)]
162.  Meduri GU, Headley AS, Golden E, Carson SJ, Umberger RA, Kelso T, Tolley EA. Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. JAMA. 1998;280:159-165.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 681]  [Cited by in F6Publishing: 605]  [Article Influence: 23.3]  [Reference Citation Analysis (0)]
163.  Keel JB, Hauser M, Stocker R, Baumann PC, Speich R. Established acute respiratory distress syndrome: benefit of corticosteroid rescue therapy. Respiration. 1998;65:258-264.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 45]  [Cited by in F6Publishing: 46]  [Article Influence: 1.9]  [Reference Citation Analysis (0)]
164.  Bone RC, Fisher CJ Jr, Clemmer TP, Slotman GJ, Metz CA. Early methylprednisolone treatment for septic syndrome and the adult respiratory distress syndrome. Chest. 1987;92:1032-1036.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 276]  [Cited by in F6Publishing: 235]  [Article Influence: 6.4]  [Reference Citation Analysis (0)]
165.  Bernard GR, Luce JM, Sprung CL, Rinaldo JE, Tate RM, Sibbald WJ, Kariman K, Higgins S, Bradley R, Metz CA. High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med. 1987;317:1565-1570.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 671]  [Cited by in F6Publishing: 585]  [Article Influence: 15.8]  [Reference Citation Analysis (0)]
166.  Meduri GU, Golden E, Freire AX, Taylor E, Zaman M, Carson SJ, Gibson M, Umberger R. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest. 2007;131:954-963.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 503]  [Cited by in F6Publishing: 506]  [Article Influence: 29.8]  [Reference Citation Analysis (0)]
167.  Weigelt JA, Norcross JF, Borman KR, Snyder WH 3rd. Early steroid therapy for respiratory failure. Arch Surg. 1985;120:536-540.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 213]  [Cited by in F6Publishing: 187]  [Article Influence: 4.8]  [Reference Citation Analysis (0)]
168.  Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020;180:934-943.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4960]  [Cited by in F6Publishing: 5373]  [Article Influence: 1343.3]  [Reference Citation Analysis (1)]
169.  Georgiev T. Coronavirus disease 2019 (COVID-19) and anti-rheumatic drugs. Rheumatol Int. 2020;40:825-826.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 28]  [Cited by in F6Publishing: 31]  [Article Influence: 7.8]  [Reference Citation Analysis (0)]
170.  Zhou W, Liu Y, Tian D, Wang C, Wang S, Cheng J, Hu M, Fang M, Gao Y. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther. 2020;5:18.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 153]  [Cited by in F6Publishing: 165]  [Article Influence: 41.3]  [Reference Citation Analysis (0)]
171.  Russell CD, Millar JE, Baillie JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet. 2020;395:473-475.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1415]  [Cited by in F6Publishing: 1415]  [Article Influence: 353.8]  [Reference Citation Analysis (0)]
172.  WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, Annane D, Azevedo LCP, Berwanger O, Cavalcanti AB, Dequin PF, Du B, Emberson J, Fisher D, Giraudeau B, Gordon AC, Granholm A, Green C, Haynes R, Heming N, Higgins JPT, Horby P, Jüni P, Landray MJ, Le Gouge A, Leclerc M, Lim WS, Machado FR, McArthur C, Meziani F, Møller MH, Perner A, Petersen MW, Savovic J, Tomazini B, Veiga VC, Webb S, Marshall JC. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA. 2020;324:1330-1341.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1683]  [Cited by in F6Publishing: 1609]  [Article Influence: 402.3]  [Reference Citation Analysis (0)]
173.  World Health Organization  WHO Clinical management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: Interim guidance. [cited 22 June 2021]. Available from: https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf?sfvrsn=bc7da517_2&msclkid=b8ae9dc9bc5911ec94d5e9144972ec07.  [PubMed]  [DOI]  [Cited in This Article: ]
174.  Peng F, Tu L, Yang Y, Hu P, Wang R, Hu Q, Cao F, Jiang T, Sun J, Xu G, Chang C. Management and Treatment of COVID-19: The Chinese Experience. Can J Cardiol. 2020;36:915-930.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 119]  [Cited by in F6Publishing: 113]  [Article Influence: 28.3]  [Reference Citation Analysis (0)]
175.  Lu X, Chen T, Wang Y, Wang J, Yan F. Adjuvant corticosteroid therapy for critically ill patients with COVID-19. Crit Care. 2020;24:241.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 72]  [Cited by in F6Publishing: 80]  [Article Influence: 20.0]  [Reference Citation Analysis (0)]
176.  Tomazini BM, Maia IS, Cavalcanti AB, Berwanger O, Rosa RG, Veiga VC, Avezum A, Lopes RD, Bueno FR, Silva MVAO, Baldassare FP, Costa ELV, Moura RAB, Honorato MO, Costa AN, Damiani LP, Lisboa T, Kawano-Dourado L, Zampieri FG, Olivato GB, Righy C, Amendola CP, Roepke RML, Freitas DHM, Forte DN, Freitas FGR, Fernandes CCF, Melro LMG, Junior GFS, Morais DC, Zung S, Machado FR, Azevedo LCP; COALITION COVID-19 Brazil III Investigators. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA. 2020;324:1307-1316.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 921]  [Cited by in F6Publishing: 885]  [Article Influence: 221.3]  [Reference Citation Analysis (0)]
177.  RECOVERY Collaborative Group; Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N, Brightling C, Ustianowski A, Elmahi E, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Baillie JK, Haynes R, Landray MJ. Dexamethasone in Hospitalized Patients with Covid-19. N Engl J Med. 2021;384:693-704.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 6762]  [Cited by in F6Publishing: 7021]  [Article Influence: 2340.3]  [Reference Citation Analysis (1)]
178.  Jeronimo CMP, Farias MEL, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, Safe IP, Borba MGS, Netto RLA, Maciel ABS, Neto JRS, Oliveira LB, Figueiredo EFG, Oliveira Dinelly KM, de Almeida Rodrigues MG, Brito M, Mourão MPG, Pivoto João GA, Hajjar LA, Bassat Q, Romero GAS, Naveca FG, Vasconcelos HL, de Araújo Tavares M, Brito-Sousa JD, Costa FTM, Nogueira ML, Baía-da-Silva DC, Xavier MS, Monteiro WM, Lacerda MVG; Metcovid Team. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized With Coronavirus Disease 2019 (COVID-19; Metcovid): A Randomized, Double-blind, Phase IIb, Placebo-controlled Trial. Clin Infect Dis. 2021;72:e373-e381.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 184]  [Cited by in F6Publishing: 291]  [Article Influence: 97.0]  [Reference Citation Analysis (0)]
179.  Dequin PF, Heming N, Meziani F, Plantefève G, Voiriot G, Badié J, François B, Aubron C, Ricard JD, Ehrmann S, Jouan Y, Guillon A, Leclerc M, Coffre C, Bourgoin H, Lengellé C, Caille-Fénérol C, Tavernier E, Zohar S, Giraudeau B, Annane D, Le Gouge A; CAPE COVID Trial Group and the CRICS-TriGGERSep Network. Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support Among Critically Ill Patients With COVID-19: A Randomized Clinical Trial. JAMA. 2020;324:1298-1306.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 366]  [Cited by in F6Publishing: 336]  [Article Influence: 84.0]  [Reference Citation Analysis (0)]
180.  Angus DC, Derde L, Al-Beidh F, Annane D, Arabi Y, Beane A, van Bentum-Puijk W, Berry L, Bhimani Z, Bonten M, Bradbury C, Brunkhorst F, Buxton M, Buzgau A, Cheng AC, de Jong M, Detry M, Estcourt L, Fitzgerald M, Goossens H, Green C, Haniffa R, Higgins AM, Horvat C, Hullegie SJ, Kruger P, Lamontagne F, Lawler PR, Linstrum K, Litton E, Lorenzi E, Marshall J, McAuley D, McGlothin A, McGuinness S, McVerry B, Montgomery S, Mouncey P, Murthy S, Nichol A, Parke R, Parker J, Rowan K, Sanil A, Santos M, Saunders C, Seymour C, Turner A, van de Veerdonk F, Venkatesh B, Zarychanski R, Berry S, Lewis RJ, McArthur C, Webb SA, Gordon AC; Writing Committee for the REMAP-CAP Investigators, Al-Beidh F, Angus D, Annane D, Arabi Y, van Bentum-Puijk W, Berry S, Beane A, Bhimani Z, Bonten M, Bradbury C, Brunkhorst F, Buxton M, Cheng A, De Jong M, Derde L, Estcourt L, Goossens H, Gordon A, Green C, Haniffa R, Lamontagne F, Lawler P, Litton E, Marshall J, McArthur C, McAuley D, McGuinness S, McVerry B, Montgomery S, Mouncey P, Murthy S, Nichol A, Parke R, Rowan K, Seymour C, Turner A, van de Veerdonk F, Webb S, Zarychanski R, Campbell L, Forbes A, Gattas D, Heritier S, Higgins L, Kruger P, Peake S, Presneill J, Seppelt I, Trapani T, Young P, Bagshaw S, Daneman N, Ferguson N, Misak C, Santos M, Hullegie S, Pletz M, Rohde G, Rowan K, Alexander B, Basile K, Girard T, Horvat C, Huang D, Linstrum K, Vates J, Beasley R, Fowler R, McGloughlin S, Morpeth S, Paterson D, Venkatesh B, Uyeki T, Baillie K, Duffy E, Fowler R, Hills T, Orr K, Patanwala A, Tong S, Netea M, Bihari S, Carrier M, Fergusson D, Goligher E, Haidar G, Hunt B, Kumar A, Laffan M, Lawless P, Lother S, McCallum P, Middeldopr S, McQuilten Z, Neal M, Pasi J, Schutgens R, Stanworth S, Turgeon A, Weissman A, Adhikari N, Anstey M, Brant E, de Man A, Lamonagne F, Masse MH, Udy A, Arnold D, Begin P, Charlewood R, Chasse M, Coyne M, Cooper J, Daly J, Gosbell I, Harvala-Simmonds H, Hills T, MacLennan S, Menon D, McDyer J, Pridee N, Roberts D, Shankar-Hari M, Thomas H, Tinmouth A, Triulzi D, Walsh T, Wood E, Calfee C, O’Kane C, Shyamsundar M, Sinha P, Thompson T, Young I, Bihari S, Hodgson C, Laffey J, McAuley D, Orford N, Neto A, Detry M, Fitzgerald M, Lewis R, McGlothlin A, Sanil A, Saunders C, Berry L, Lorenzi E, Miller E, Singh V, Zammit C, van Bentum Puijk W, Bouwman W, Mangindaan Y, Parker L, Peters S, Rietveld I, Raymakers K, Ganpat R, Brillinger N, Markgraf R, Ainscough K, Brickell K, Anjum A, Lane JB, Richards-Belle A, Saull M, Wiley D, Bion J, Connor J, Gates S, Manax V, van der Poll T, Reynolds J, van Beurden M, Effelaar E, Schotsman J, Boyd C, Harland C, Shearer A, Wren J, Clermont G, Garrard W, Kalchthaler K, King A, Ricketts D, Malakoutis S, Marroquin O, Music E, Quinn K, Cate H, Pearson K, Collins J, Hanson J, Williams P, Jackson S, Asghar A, Dyas S, Sutu M, Murphy S, Williamson D, Mguni N, Potter A, Porter D, Goodwin J, Rook C, Harrison S, Williams H, Campbell H, Lomme K, Williamson J, Sheffield J, van’t Hoff W, McCracken P, Young M, Board J, Mart E, Knott C, Smith J, Boschert C, Affleck J, Ramanan M, D’Souza R, Pateman K, Shakih A, Cheung W, Kol M, Wong H, Shah A, Wagh A, Simpson J, Duke G, Chan P, Cartner B, Hunter S, Laver R, Shrestha T, Regli A, Pellicano A, McCullough J, Tallott M, Kumar N, Panwar R, Brinkerhoff G, Koppen C, Cazzola F, Brain M, Mineall S, Fischer R, Biradar V, Soar N, White H, Estensen K, Morrison L, Smith J, Cooper M, Health M, Shehabi Y, Al-Bassam W, Hulley A, Whitehead C, Lowrey J, Gresha R, Walsham J, Meyer J, Harward M, Venz E, Williams P, Kurenda C, Smith K, Smith M, Garcia R, Barge D, Byrne D, Byrne K, Driscoll A, Fortune L, Janin P, Yarad E, Hammond N, Bass F, Ashelford A, Waterson S, Wedd S, McNamara R, Buhr H, Coles J, Schweikert S, Wibrow B, Rauniyar R, Myers E, Fysh E, Dawda A, Mevavala B, Litton E, Ferrier J, Nair P, Buscher H, Reynolds C, Santamaria J, Barbazza L, Homes J, Smith R, Murray L, Brailsford J, Forbes L, Maguire T, Mariappa V, Smith J, Simpson S, Maiden M, Bone A, Horton M, Salerno T, Sterba M, Geng W, Depuydt P, De Waele J, De Bus L, Fierens J, Bracke S, Reeve B, Dechert W, Chassé M, Carrier FM, Boumahni D, Benettaib F, Ghamraoui A, Bellemare D, Cloutier È, Francoeur C, Lamontagne F, D’Aragon F, Carbonneau E, Leblond J, Vazquez-Grande G, Marten N, Wilson M, Albert M, Serri K, Cavayas A, Duplaix M, Williams V, Rochwerg B, Karachi T, Oczkowski S, Centofanti J, Millen T, Duan E, Tsang J, Patterson L, English S, Watpool I, Porteous R, Miezitis S, McIntyre L, Brochard L, Burns K, Sandhu G, Khalid I, Binnie A, Powell E, McMillan A, Luk T, Aref N, Andric Z, Cviljevic S, Đimoti R, Zapalac M, Mirković G, Baršić B, Kutleša M, Kotarski V, Vujaklija Brajković A, Babel J, Sever H, Dragija L, Kušan I, Vaara S, Pettilä L, Heinonen J, Kuitunen A, Karlsson S, Vahtera A, Kiiski H, Ristimäki S, Azaiz A, Charron C, Godement M, Geri G, Vieillard-Baron A, Pourcine F, Monchi M, Luis D, Mercier R, Sagnier A, Verrier N, Caplin C, Siami S, Aparicio C, Vautier S, Jeblaoui A, Fartoukh M, Courtin L, Labbe V, Leparco C, Muller G, Nay MA, Kamel T, Benzekri D, Jacquier S, Mercier E, Chartier D, Salmon C, Dequin P, Schneider F, Morel G, L’Hotellier S, Badie J, Berdaguer FD, Malfroy S, Mezher C, Bourgoin C, Megarbane B, Voicu S, Deye N, Malissin I, Sutterlin L, Guitton C, Darreau C, Landais M, Chudeau N, Robert A, Moine P, Heming N, Maxime V, Bossard I, Nicholier TB, Colin G, Zinzoni V, Maquigneau N, Finn A, Kreß G, Hoff U, Friedrich Hinrichs C, Nee J, Pletz M, Hagel S, Ankert J, Kolanos S, Bloos F, Petros S, Pasieka B, Kunz K, Appelt P, Schütze B, Kluge S, Nierhaus A, Jarczak D, Roedl K, Weismann D, Frey A, Klinikum Neukölln V, Reill L, Distler M, Maselli A, Bélteczki J, Magyar I, Fazekas Á, Kovács S, Szőke V, Szigligeti G, Leszkoven J, Collins D, Breen P, Frohlich S, Whelan R, McNicholas B, Scully M, Casey S, Kernan M, Doran P, O’Dywer M, Smyth M, Hayes L, Hoiting O, Peters M, Rengers E, Evers M, Prinssen A, Bosch Ziekenhuis J, Simons K, Rozendaal W, Polderman F, de Jager P, Moviat M, Paling A, Salet A, Rademaker E, Peters AL, de Jonge E, Wigbers J, Guilder E, Butler M, Cowdrey KA, Newby L, Chen Y, Simmonds C, McConnochie R, Ritzema Carter J, Henderson S, Van Der Heyden K, Mehrtens J, Williams T, Kazemi A, Song R, Lai V, Girijadevi D, Everitt R, Russell R, Hacking D, Buehner U, Williams E, Browne T, Grimwade K, Goodson J, Keet O, Callender O, Martynoga R, Trask K, Butler A, Schischka L, Young C, Lesona E, Olatunji S, Robertson Y, José N, Amaro dos Santos Catorze T, de Lima Pereira TNA, Neves Pessoa LM, Castro Ferreira RM, Pereira Sousa Bastos JM, Aysel Florescu S, Stanciu D, Zaharia MF, Kosa AG, Codreanu D, Marabi Y, Al Qasim E, Moneer Hagazy M, Al Swaidan L, Arishi H, Muñoz-Bermúdez R, Marin-Corral J, Salazar Degracia A, Parrilla Gómez F, Mateo López MI, Rodriguez Fernandez J, Cárcel Fernández S, Carmona Flores R, León López R, de la Fuente Martos C, Allan A, Polgarova P, Farahi N, McWilliam S, Hawcutt D, Rad L, O’Malley L, Whitbread J, Kelsall O, Wild L, Thrush J, Wood H, Austin K, Donnelly A, Kelly M, O’Kane S, McClintock D, Warnock M, Johnston P, Gallagher LJ, Mc Goldrick C, Mc Master M, Strzelecka A, Jha R, Kalogirou M, Ellis C, Krishnamurthy V, Deelchand V, Silversides J, McGuigan P, Ward K, O’Neill A, Finn S, Phillips B, Mullan D, Oritz-Ruiz de Gordoa L, Thomas M, Sweet K, Grimmer L, Johnson R, Pinnell J, Robinson M, Gledhill L, Wood T, Morgan M, Cole J, Hill H, Davies M, Antcliffe D, Templeton M, Rojo R, Coghlan P, Smee J, Mackay E, Cort J, Whileman A, Spencer T, Spittle N, Kasipandian V, Patel A, Allibone S, Genetu RM, Ramali M, Ghosh A, Bamford P, London E, Cawley K, Faulkner M, Jeffrey H, Smith T, Brewer C, Gregory J, Limb J, Cowton A, O’Brien J, Nikitas N, Wells C, Lankester L, Pulletz M, Williams P, Birch J, Wiseman S, Horton S, Alegria A, Turki S, Elsefi T, Crisp N, Allen L, McCullagh I, Robinson P, Hays C, Babio-Galan M, Stevenson H, Khare D, Pinder M, Selvamoni S, Gopinath A, Pugh R, Menzies D, Mackay C, Allan E, Davies G, Puxty K, McCue C, Cathcart S, Hickey N, Ireland J, Yusuff H, Isgro G, Brightling C, Bourne M, Craner M, Watters M, Prout R, Davies L, Pegler S, Kyeremeh L, Arbane G, Wilson K, Gomm L, Francia F, Brett S, Sousa Arias S, Elin Hall R, Budd J, Small C, Birch J, Collins E, Henning J, Bonner S, Hugill K, Cirstea E, Wilkinson D, Karlikowski M, Sutherland H, Wilhelmsen E, Woods J, North J, Sundaran D, Hollos L, Coburn S, Walsh J, Turns M, Hopkins P, Smith J, Noble H, Depante MT, Clarey E, Laha S, Verlander M, Williams A, Huckle A, Hall A, Cooke J, Gardiner-Hill C, Maloney C, Qureshi H, Flint N, Nicholson S, Southin S, Nicholson A, Borgatta B, Turner-Bone I, Reddy A, Wilding L, Chamara Warnapura L, Agno Sathianathan R, Golden D, Hart C, Jones J, Bannard-Smith J, Henry J, Birchall K, Pomeroy F, Quayle R, Makowski A, Misztal B, Ahmed I, KyereDiabour T, Naiker K, Stewart R, Mwaura E, Mew L, Wren L, Willams F, Innes R, Doble P, Hutter J, Shovelton C, Plumb B, Szakmany T, Hamlyn V, Hawkins N, Lewis S, Dell A, Gopal S, Ganguly S, Smallwood A, Harris N, Metherell S, Lazaro JM, Newman T, Fletcher S, Nortje J, Fottrell-Gould D, Randell G, Zaman M, Elmahi E, Jones A, Hall K, Mills G, Ryalls K, Bowler H, Sall J, Bourne R, Borrill Z, Duncan T, Lamb T, Shaw J, Fox C, Moreno Cuesta J, Xavier K, Purohit D, Elhassan M, Bakthavatsalam D, Rowland M, Hutton P, Bashyal A, Davidson N, Hird C, Chhablani M, Phalod G, Kirkby A, Archer S, Netherton K, Reschreiter H, Camsooksai J, Patch S, Jenkins S, Pogson D, Rose S, Daly Z, Brimfield L, Claridge H, Parekh D, Bergin C, Bates M, Dasgin J, McGhee C, Sim M, Hay SK, Henderson S, Phull MK, Zaidi A, Pogreban T, Rosaroso LP, Harvey D, Lowe B, Meredith M, Ryan L, Hormis A, Walker R, Collier D, Kimpton S, Oakley S, Rooney K, Rodden N, Hughes E, Thomson N, McGlynn D, Walden A, Jacques N, Coles H, Tilney E, Vowell E, Schuster-Bruce M, Pitts S, Miln R, Purandare L, Vamplew L, Spivey M, Bean S, Burt K, Moore L, Day C, Gibson C, Gordon E, Zitter L, Keenan S, Baker E, Cherian S, Cutler S, Roynon-Reed A, Harrington K, Raithatha A, Bauchmuller K, Ahmad N, Grecu I, Trodd D, Martin J, Wrey Brown C, Arias AM, Craven T, Hope D, Singleton J, Clark S, Rae N, Welters I, Hamilton DO, Williams K, Waugh V, Shaw D, Puthucheary Z, Martin T, Santos F, Uddin R, Somerville A, Tatham KC, Jhanji S, Black E, Dela Rosa A, Howle R, Tully R, Drummond A, Dearden J, Philbin J, Munt S, Vuylsteke A, Chan C, Victor S, Matsa R, Gellamucho M, Creagh-Brown B, Tooley J, Montague L, De Beaux F, Bullman L, Kersiake I, Demetriou C, Mitchard S, Ramos L, White K, Donnison P, Johns M, Casey R, Mattocks L, Salisbury S, Dark P, Claxton A, McLachlan D, Slevin K, Lee S, Hulme J, Joseph S, Kinney F, Senya HJ, Oborska A, Kayani A, Hadebe B, Orath Prabakaran R, Nichols L, Thomas M, Worner R, Faulkner B, Gendall E, Hayes K, Hamilton-Davies C, Chan C, Mfuko C, Abbass H, Mandadapu V, Leaver S, Forton D, Patel K, Paramasivam E, Powell M, Gould R, Wilby E, Howcroft C, Banach D, Fernández de Pinedo Artaraz Z, Cabreros L, White I, Croft M, Holland N, Pereira R, Zaki A, Johnson D, Jackson M, Garrard H, Juhaz V, Roy A, Rostron A, Woods L, Cornell S, Pillai S, Harford R, Rees T, Ivatt H, Sundara Raman A, Davey M, Lee K, Barber R, Chablani M, Brohi F, Jagannathan V, Clark M, Purvis S, Wetherill B, Dushianthan A, Cusack R, de Courcy-Golder K, Smith S, Jackson S, Attwood B, Parsons P, Page V, Zhao XB, Oza D, Rhodes J, Anderson T, Morris S, Xia Le Tai C, Thomas A, Keen A, Digby S, Cowley N, Wild L, Southern D, Reddy H, Campbell A, Watkins C, Smuts S, Touma O, Barnes N, Alexander P, Felton T, Ferguson S, Sellers K, Bradley-Potts J, Yates D, Birkinshaw I, Kell K, Marshall N, Carr-Knott L, Summers C. Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. JAMA. 2020;324:1317-1329.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 623]  [Cited by in F6Publishing: 580]  [Article Influence: 145.0]  [Reference Citation Analysis (0)]
181.  Edalatifard M, Akhtari M, Salehi M, Naderi Z, Jamshidi A, Mostafaei S, Najafizadeh SR, Farhadi E, Jalili N, Esfahani M, Rahimi B, Kazemzadeh H, Mahmoodi Aliabadi M, Ghazanfari T, Sattarian M, Ebrahimi Louyeh H, Raeeskarami SR, Jamalimoghadamsiahkali S, Khajavirad N, Mahmoudi M, Rostamian A. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. Eur Respir J. 2020;56.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 171]  [Cited by in F6Publishing: 235]  [Article Influence: 58.8]  [Reference Citation Analysis (0)]
182.  Callejas Rubio JL, Luna Del Castillo JD, de la Hera Fernández J, Guirao Arrabal E, Colmenero Ruiz M, Ortego Centeno N. [Effectiveness of corticoid pulses in patients with cytokine storm syndrome induced by SARS-CoV-2 infection]. Med Clin (Barc). 2020;155:159-161.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 22]  [Cited by in F6Publishing: 26]  [Article Influence: 6.5]  [Reference Citation Analysis (0)]
183.  Ruiz-Irastorza G, Pijoan JI, Bereciartua E, Dunder S, Dominguez J, Garcia-Escudero P, Rodrigo A, Gomez-Carballo C, Varona J, Guio L, Ibarrola M, Ugarte A, Martinez-Berriotxoa A; Cruces COVID Study Group. Second week methyl-prednisolone pulses improve prognosis in patients with severe coronavirus disease 2019 pneumonia: An observational comparative study using routine care data. PLoS One. 2020;15:e0239401.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 40]  [Cited by in F6Publishing: 43]  [Article Influence: 10.8]  [Reference Citation Analysis (0)]
184.  Cusacovich I, Aparisi Á, Marcos M, Ybarra-Falcón C, Iglesias-Echevarria C, Lopez-Veloso M, Barraza-Vengoechea J, Dueñas C, Juarros Martínez SA, Rodríguez-Alonso B, Martín-Oterino JÁ, Montero-Baladia M, Moralejo L, Andaluz-Ojeda D, Gonzalez-Fuentes R. Corticosteroid Pulses for Hospitalized Patients with COVID-19: Effects on Mortality. Mediators Inflamm. 2021;2021:6637227.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 11]  [Article Influence: 3.7]  [Reference Citation Analysis (0)]
185.  Corral-Gudino L  MP3-pulses-COVID-19. Methylprednisolone Pulses Versus Dexamethasone According RECOVERY Protocol in Patients With Pneumonia Due to SARS-COV-2 Coronavirus Infection. [accessed 2021 Jul 5]. In: ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/history/NCT04780581?V_2=View&msclkid=7fc298a1bc5811ecb7fef0bd1162a159 ClinicalTrials.gov Identifier: NCT04780581.  [PubMed]  [DOI]  [Cited in This Article: ]
186.  Kim MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med. 2020;17:e1003501.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 153]  [Cited by in F6Publishing: 121]  [Article Influence: 30.3]  [Reference Citation Analysis (0)]
187.  van Paassen J, Vos JS, Hoekstra EM, Neumann KMI, Boot PC, Arbous SM. Corticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomes. Crit Care. 2020;24:696.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 239]  [Cited by in F6Publishing: 231]  [Article Influence: 57.8]  [Reference Citation Analysis (0)]
188.  Corral-Gudino L, Bahamonde A, Arnaiz-Revillas F, Gómez-Barquero J, Abadía-Otero J, García-Ibarbia C, Mora V, Cerezo-Hernández A, Hernández JL, López-Muñíz G, Hernández-Blanco F, Cifrián JM, Olmos JM, Carrascosa M, Nieto L, Fariñas MC, Riancho JA; GLUCOCOVID investigators. Methylprednisolone in adults hospitalized with COVID-19 pneumonia: An open-label randomized trial (GLUCOCOVID). Wien Klin Wochenschr. 2021;133:303-311.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 109]  [Cited by in F6Publishing: 99]  [Article Influence: 33.0]  [Reference Citation Analysis (0)]
189.  Gupta A, Karki R, Dandu HR, Dhama K, Bhatt ML, Saxena SK. COVID-19: benefits and risks of passive immunotherapeutics. Hum Vaccin Immunother. 2020;16:2963-2972.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 7]  [Cited by in F6Publishing: 8]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
190.  Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review. J Infect Public Health. 2018;11:9-17.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 89]  [Cited by in F6Publishing: 83]  [Article Influence: 11.9]  [Reference Citation Analysis (0)]
191.  Nguyen AA, Habiballah SB, Platt CD, Geha RS, Chou JS, McDonald DR. Immunoglobulins in the treatment of COVID-19 infection: Proceed with caution! Clin Immunol. 2020;216:108459.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 80]  [Cited by in F6Publishing: 78]  [Article Influence: 19.5]  [Reference Citation Analysis (0)]
192.  Moradimajd P, Samaee H, Sedigh-Maroufi S, Kourosh-Aami M, Mohsenzadagan M. Administration of intravenous immunoglobulin in the treatment of COVID-19: A review of available evidence. J Med Virol. 2021;93:2675-2682.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 12]  [Cited by in F6Publishing: 16]  [Article Influence: 5.3]  [Reference Citation Analysis (0)]
193.  Xie Y, Cao S, Dong H, Li Q, Chen E, Zhang W, Yang L, Fu S, Wang R. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020;81:318-356.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 148]  [Cited by in F6Publishing: 168]  [Article Influence: 42.0]  [Reference Citation Analysis (0)]
194.  Tabarsi P, Barati S, Jamaati H, Haseli S, Marjani M, Moniri A, Abtahian Z, Dastan A, Yousefian S, Eskandari R, Saffaei A, Monjazebi F, Vahedi A, Dastan F. Evaluating the effects of Intravenous Immunoglobulin (IVIg) on the management of severe COVID-19 cases: A randomized controlled trial. Int Immunopharmacol. 2021;90:107205.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 36]  [Cited by in F6Publishing: 56]  [Article Influence: 14.0]  [Reference Citation Analysis (0)]
195.  Gharebaghi N, Nejadrahim R, Mousavi SJ, Sadat-Ebrahimi SR, Hajizadeh R. The use of intravenous immunoglobulin gamma for the treatment of severe coronavirus disease 2019: a randomized placebo-controlled double-blind clinical trial. BMC Infect Dis. 2020;20:786.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 93]  [Cited by in F6Publishing: 91]  [Article Influence: 22.8]  [Reference Citation Analysis (0)]
196.  Perricone C, Triggianese P, Bursi R, Cafaro G, Bartoloni E, Chimenti MS, Gerli R, Perricone R. Intravenous Immunoglobulins at the Crossroad of Autoimmunity and Viral Infections. Microorganisms. 2021;9.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 26]  [Cited by in F6Publishing: 22]  [Article Influence: 7.3]  [Reference Citation Analysis (0)]
197.  Hung IFN, To KKW, Lee CK, Lee KL, Yan WW, Chan K, Chan WM, Ngai CW, Law KI, Chow FL, Liu R, Lai KY, Lau CCY, Liu SH, Chan KH, Lin CK, Yuen KY. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest. 2013;144:464-473.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 218]  [Cited by in F6Publishing: 235]  [Article Influence: 23.5]  [Reference Citation Analysis (0)]
198.  Annamaria P, Eugenia Q, Paolo S. Anti-SARS-CoV-2 hyperimmune plasma workflow. Transfus Apher Sci. 2020;59:102850.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 8]  [Cited by in F6Publishing: 8]  [Article Influence: 2.0]  [Reference Citation Analysis (0)]
199.  Piechotta V, Chai KL, Valk SJ, Doree C, Monsef I, Wood EM, Lamikanra A, Kimber C, McQuilten Z, So-Osman C, Estcourt LJ, Skoetz N. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev. 2020;7:CD013600.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 71]  [Cited by in F6Publishing: 100]  [Article Influence: 25.0]  [Reference Citation Analysis (0)]
200.  Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P; PLACID Trial Collaborators. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ. 2020;371:m3939.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 426]  [Cited by in F6Publishing: 454]  [Article Influence: 113.5]  [Reference Citation Analysis (0)]
201.  Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, Kong Y, Ren L, Wei Q, Mei H, Hu C, Tao C, Yang R, Wang J, Yu Y, Guo Y, Wu X, Xu Z, Zeng L, Xiong N, Chen L, Man N, Liu Y, Xu H, Deng E, Zhang X, Li C, Wang C, Su S, Zhang L, Wu Y, Liu Z. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA. 2020;324:460-470.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 854]  [Cited by in F6Publishing: 883]  [Article Influence: 220.8]  [Reference Citation Analysis (0)]
202.  Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020;323:1582-1589.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1580]  [Cited by in F6Publishing: 1562]  [Article Influence: 390.5]  [Reference Citation Analysis (0)]
203.  Zhang B, Liu S, Tan T, Huang W, Dong Y, Chen L, Chen Q, Zhang L, Zhong Q, Zhang X, Zou Y, Zhang S. Treatment With Convalescent Plasma for Critically Ill Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Chest. 2020;158:e9-e13.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 296]  [Cited by in F6Publishing: 285]  [Article Influence: 71.3]  [Reference Citation Analysis (0)]
204.  Parihar SP, Guler R, Brombacher F. Statins: a viable candidate for host-directed therapy against infectious diseases. Nat Rev Immunol. 2019;19:104-117.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 66]  [Cited by in F6Publishing: 89]  [Article Influence: 17.8]  [Reference Citation Analysis (0)]
205.  Scheen AJ. Statins and clinical outcomes with COVID-19: Meta-analyses of observational studies. Diabetes Metab. 2021;47:101220.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 14]  [Article Influence: 3.5]  [Reference Citation Analysis (0)]
206.  Aparisi Á, Amat-Santos IJ, López Otero D, Marcos-Mangas M, González-Juanatey JR, San Román JA. Impact of statins in patients with COVID-19. Rev Esp Cardiol (Engl Ed). 2021;74:637-640.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 3]  [Cited by in F6Publishing: 4]  [Article Influence: 1.3]  [Reference Citation Analysis (0)]
207.  Cariou B, Goronflot T, Rimbert A, Boullu S, Le May C, Moulin P, Pichelin M, Potier L, Smati S, Sultan A, Tramunt B, Wargny M, Gourdy P, Hadjadj S; CORONADO investigators. Routine use of statins and increased COVID-19 related mortality in inpatients with type 2 diabetes: Results from the CORONADO study. Diabetes Metab. 2021;47:101202.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 41]  [Cited by in F6Publishing: 50]  [Article Influence: 12.5]  [Reference Citation Analysis (0)]
208.  Saeed O, Castagna F, Agalliu I, Xue X, Patel SR, Rochlani Y, Kataria R, Vukelic S, Sims DB, Alvarez C, Rivas-Lasarte M, Garcia MJ, Jorde UP. Statin Use and In-Hospital Mortality in Patients With Diabetes Mellitus and COVID-19. J Am Heart Assoc. 2020;9:e018475.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 74]  [Cited by in F6Publishing: 74]  [Article Influence: 18.5]  [Reference Citation Analysis (0)]
209.  Lee HY, Ahn J, Park J, Kyung Kang C, Won SH, Wook Kim D, Park JH, Chung KH, Joh JS, Bang JH, Hee Kang C, Bum Pyun W, Oh MD; Korean Society of Hypertension, National Committee for Clinical Management of Emerging Infectious Diseases. Beneficial Effect of Statins in COVID-19-Related Outcomes-Brief Report: A National Population-Based Cohort Study. Arterioscler Thromb Vasc Biol. 2021;41:e175-e182.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 32]  [Cited by in F6Publishing: 28]  [Article Influence: 9.3]  [Reference Citation Analysis (0)]
210.  Owji H, Negahdaripour M, Hajighahramani N. Immunotherapeutic approaches to curtail COVID-19. Int Immunopharmacol. 2020;88:106924.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 54]  [Cited by in F6Publishing: 44]  [Article Influence: 11.0]  [Reference Citation Analysis (0)]
211.  Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Transl Sci. 2020;5:518-536.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 195]  [Cited by in F6Publishing: 200]  [Article Influence: 50.0]  [Reference Citation Analysis (0)]
212.  Oesterle A, Laufs U, Liao JK. Pleiotropic Effects of Statins on the Cardiovascular System. Circ Res. 2017;120:229-243.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 573]  [Cited by in F6Publishing: 774]  [Article Influence: 110.6]  [Reference Citation Analysis (0)]
213.  Bangalore S, Sharma A, Slotwiner A, Yatskar L, Harari R, Shah B, Ibrahim H, Friedman GH, Thompson C, Alviar CL, Chadow HL, Fishman GI, Reynolds HR, Keller N, Hochman JS. ST-Segment Elevation in Patients with Covid-19 - A Case Series. N Engl J Med. 2020;382:2478-2480.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 525]  [Cited by in F6Publishing: 600]  [Article Influence: 150.0]  [Reference Citation Analysis (0)]
214.  Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, De Leacy RA, Shigematsu T, Ladner TR, Yaeger KA, Skliut M, Weinberger J, Dangayach NS, Bederson JB, Tuhrim S, Fifi JT. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N Engl J Med. 2020;382:e60.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 1553]  [Cited by in F6Publishing: 1545]  [Article Influence: 386.3]  [Reference Citation Analysis (0)]
215.  National Heart, Lung, and Blood Institute ARDS Clinical Trials Network, Truwit JD, Bernard GR, Steingrub J, Matthay MA, Liu KD, Albertson TE, Brower RG, Shanholtz C, Rock P, Douglas IS, deBoisblanc BP, Hough CL, Hite RD, Thompson BT. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med. 2014;370:2191-2200.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 360]  [Cited by in F6Publishing: 396]  [Article Influence: 39.6]  [Reference Citation Analysis (0)]
216.  McAuley DF, Laffey JG, O'Kane CM, Perkins GD, Mullan B, Trinder TJ, Johnston P, Hopkins PA, Johnston AJ, McDowell C, McNally C; HARP-2 Investigators;  Irish Critical Care Trials Group. Simvastatin in the acute respiratory distress syndrome. N Engl J Med. 2014;371:1695-1703.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 292]  [Cited by in F6Publishing: 323]  [Article Influence: 32.3]  [Reference Citation Analysis (0)]
217.  Xiong B, Wang C, Tan J, Cao Y, Zou Y, Yao Y, Qian J, Rong S, Huang Y, Huang J. Statins for the prevention and treatment of acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis. Respirology. 2016;21:1026-1033.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 21]  [Cited by in F6Publishing: 24]  [Article Influence: 3.0]  [Reference Citation Analysis (0)]
218.  Calfee CS, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, McDowell C, Laffey JG, O'Kane CM, McAuley DF; Irish Critical Care Trials Group. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med. 2018;6:691-698.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 293]  [Cited by in F6Publishing: 447]  [Article Influence: 74.5]  [Reference Citation Analysis (0)]
219.  Nägele MP, Haubner B, Tanner FC, Ruschitzka F, Flammer AJ. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications. Atherosclerosis. 2020;314:58-62.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 129]  [Cited by in F6Publishing: 178]  [Article Influence: 44.5]  [Reference Citation Analysis (0)]
220.  Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol. 2011;11:330-342.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 378]  [Cited by in F6Publishing: 426]  [Article Influence: 32.8]  [Reference Citation Analysis (0)]
221.  Barata JT, Durum SK, Seddon B. Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol. 2019;20:1584-1593.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 109]  [Cited by in F6Publishing: 196]  [Article Influence: 39.2]  [Reference Citation Analysis (0)]
222.  Laterre PF, François B, Collienne C, Hantson P, Jeannet R, Remy KE, Hotchkiss RS. Association of Interleukin 7 Immunotherapy With Lymphocyte Counts Among Patients With Severe Coronavirus Disease 2019 (COVID-19). JAMA Netw Open. 2020;3:e2016485.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 61]  [Cited by in F6Publishing: 67]  [Article Influence: 16.8]  [Reference Citation Analysis (0)]
223.  Liu Y, Pan Y, Hu Z, Wu M, Wang C, Feng Z, Mao C, Tan Y, Liu Y, Chen L, Li M, Wang G, Yuan Z, Diao B, Wu Y, Chen Y. Thymosin Alpha 1 Reduces the Mortality of Severe Coronavirus Disease 2019 by Restoration of Lymphocytopenia and Reversion of Exhausted T Cells. Clin Infect Dis. 2020;71:2150-2157.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 68]  [Cited by in F6Publishing: 102]  [Article Influence: 25.5]  [Reference Citation Analysis (0)]
224.  Lim ZJ, Subramaniam A, Ponnapa Reddy M, Blecher G, Kadam U, Afroz A, Billah B, Ashwin S, Kubicki M, Bilotta F, Curtis JR, Rubulotta F. Case Fatality Rates for Patients with COVID-19 Requiring Invasive Mechanical Ventilation. A Meta-analysis. Am J Respir Crit Care Med. 2021;203:54-66.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 255]  [Cited by in F6Publishing: 242]  [Article Influence: 80.7]  [Reference Citation Analysis (0)]
225.  Chang R, Elhusseiny KM, Yeh YC, Sun WZ. COVID-19 ICU and mechanical ventilation patient characteristics and outcomes-A systematic review and meta-analysis. PLoS One. 2021;16:e0246318.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 110]  [Cited by in F6Publishing: 137]  [Article Influence: 45.7]  [Reference Citation Analysis (0)]
226.  Penttilä PA, Van Gassen S, Panovska D, Vanderbeke L, Van Herck Y, Quintelier K, Emmaneel A, Filtjens J, Malengier-Devlies B, Ahmadzadeh K, Van Mol P, Borràs DM, Antoranz A, Bosisio FM, Wauters E, Martinod K, Matthys P, Saeys Y, Garg AD, Wauters J, De Smet F; CONTAGIOUS consortium. High dimensional profiling identifies specific immune types along the recovery trajectories of critically ill COVID19 patients. Cell Mol Life Sci. 2021;78:3987-4002.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 4]  [Cited by in F6Publishing: 5]  [Article Influence: 1.7]  [Reference Citation Analysis (0)]
227.  Rodríguez A, Ruiz-Botella M, Martín-Loeches I, Jimenez Herrera M, Solé-Violan J, Gómez J, Bodí M, Trefler S, Papiol E, Díaz E, Suberviola B, Vallverdu M, Mayor-Vázquez E, Albaya Moreno A, Canabal Berlanga A, Sánchez M, Del Valle Ortíz M, Ballesteros JC, Martín Iglesias L, Marín-Corral J, López Ramos E, Hidalgo Valverde V, Vidaur Tello LV, Sancho Chinesta S, Gonzáles de Molina FJ, Herrero García S, Sena Pérez CC, Pozo Laderas JC, Rodríguez García R, Estella A, Ferrer R; COVID-19 SEMICYUC Working Group. Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain. Crit Care. 2021;25:63.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 35]  [Cited by in F6Publishing: 37]  [Article Influence: 12.3]  [Reference Citation Analysis (0)]
228.  Osuchowski MF, Winkler MS, Skirecki T, Cajander S, Shankar-Hari M, Lachmann G, Monneret G, Venet F, Bauer M, Brunkhorst FM, Weis S, Garcia-Salido A, Kox M, Cavaillon JM, Uhle F, Weigand MA, Flohé SB, Wiersinga WJ, Almansa R, de la Fuente A, Martin-Loeches I, Meisel C, Spinetti T, Schefold JC, Cilloniz C, Torres A, Giamarellos-Bourboulis EJ, Ferrer R, Girardis M, Cossarizza A, Netea MG, van der Poll T, Bermejo-Martín JF, Rubio I. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir Med. 2021;9:622-642.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 181]  [Cited by in F6Publishing: 331]  [Article Influence: 110.3]  [Reference Citation Analysis (0)]
229.  Chen H, Xie J, Su N, Wang J, Sun Q, Li S, Jin J, Zhou J, Mo M, Wei Y, Chao Y, Hu W, Du B, Qiu H. Corticosteroid Therapy Is Associated With Improved Outcome in Critically Ill Patients With COVID-19 With Hyperinflammatory Phenotype. Chest. 2021;159:1793-1802.  [PubMed]  [DOI]  [Cited in This Article: ]  [Cited by in Crossref: 25]  [Cited by in F6Publishing: 43]  [Article Influence: 10.8]  [Reference Citation Analysis (0)]