For: | Kane-Gill SL, Achanta A, Kellum JA, Handler SM. Clinical decision support for drug related events: Moving towards better prevention. World J Crit Care Med 2016; 5(4): 204-211 [PMID: 27896144 DOI: 10.5492/wjccm.v5.i4.204] |
---|---|
URL: | https://www.wjgnet.com/2220-3141/full/v5/i4/204.htm |
Number | Citing Articles |
1 |
Caroline E. Stephens, Elizabeth Halifax, Daniel David, Nhat Bui, Sei J. Lee, Janet Shim, Christine S. Ritchie. “They Don’t Trust Us”: The Influence of Perceptions of Inadequate Nursing Home Care on Emergency Department Transfers and the Potential Role for Telehealth. Clinical Nursing Research 2020; 29(3): 157 doi: 10.1177/1054773819835015
|
2 |
Qiang Wen, Chuang Yang, Bangjian Deng, Yi Zhang, Lin Song. Characterization of children’s prospective prescription review and exploration of factors influencing the success of interventions. Therapeutic Advances in Drug Safety 2025; 16 doi: 10.1177/20420986241311448
|
3 |
Siobhán McGettigan, Denis Curtin, Denis O’Mahony. Adverse Drug Reactions in Multimorbid Older People Exposed to Polypharmacy: Epidemiology and Prevention. Pharmacoepidemiology 2024; 3(2): 208 doi: 10.3390/pharma3020013
|
4 |
Kenneth H. Carver, L. Hayley Burgess, Mandelin Cooper, Ty Elders, Joan Kramer. Use of clinical decision support to identify i.v.-to-oral conversion opportunities and cost savings. American Journal of Health-System Pharmacy 2018; 75(23_Supplement_4): S82 doi: 10.2146/ajhp170405
|
5 |
Rebecca A. Greene, Andrew R. Zullo, Craig M. Mailloux, Christine Berard-Collins, Mitchell M. Levy, Timothy Amass. Effect of Best Practice Advisories on Sedation Protocol Compliance and Drug-Related Hazardous Condition Mitigation Among Critical Care Patients*. Critical Care Medicine 2020; 48(2): 185 doi: 10.1097/CCM.0000000000004116
|
6 |
Ramzi Shawahna. Merits, features, and desiderata to be considered when developing electronic health records with embedded clinical decision support systems in Palestinian hospitals: a consensus study. BMC Medical Informatics and Decision Making 2019; 19(1) doi: 10.1186/s12911-019-0928-3
|
7 |
Yan Li, Xitong Guo, Carol Hsu, Xiaoxiao Liu, Doug Vogel. Exploring the Impact of the Prescription Automatic Screening System in Health Care Services: Quasi-Experiment. JMIR Medical Informatics 2019; 7(2): e11663 doi: 10.2196/11663
|
8 |
Laurine Robert, Elodie Cuvelier, Chloé Rousselière, Sophie Gautier, Pascal Odou, Jean-Baptiste Beuscart, Bertrand Décaudin. Detection of Drug-Related Problems through a Clinical Decision Support System Used by a Clinical Pharmacy Team. Healthcare 2023; 11(6): 827 doi: 10.3390/healthcare11060827
|
9 |
Thomas Brox Røst, Carolyn Clausen, Øystein Nytrø, Roman Koposov, Bennett Leventhal, Odd Sverre Westbye, Victoria Bakken, Linda Helen Knudsen Flygel, Kaban Koochakpour, Norbert Skokauskas. Local, Early, and Precise: Designing a Clinical Decision Support System for Child and Adolescent Mental Health Services. Frontiers in Psychiatry 2020; 11 doi: 10.3389/fpsyt.2020.564205
|
10 |
Mina Younan, Mohamed Elhoseny, Abd El-Mageid A. Ali, Essam H. Houssein. Data Reduction Model for Balancing Indexing and Securing Resources in the Internet-of-Things Applications. IEEE Internet of Things Journal 2021; 8(7): 5953 doi: 10.1109/JIOT.2020.3035248
|
11 |
Yan Li, Benjamin Staley, Carl Henriksen, Dandan Xu, Gloria Lipori, Almut G Winterstein. Development and validation of a dynamic inpatient risk prediction model for clinically significant hypokalemia using electronic health record data. American Journal of Health-System Pharmacy 2019; 76(5): 301 doi: 10.1093/ajhp/zxy051
|
12 |
Sandra L. Kane‐Gill. Innovations in Medication Safety: Services and Technologies to Enhance the Understanding and Prevention of Adverse Drug Reactions. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 2018; 38(8): 782 doi: 10.1002/phar.2154
|
13 |
Mitchell S. Buckley, Jeffrey R. Rasmussen, Dale S. Bikin, Emily C. Richards, Andrew J. Berry, Mark A. Culver, Ryan M. Rivosecchi, Sandra L. Kane-Gill. Trigger alerts associated with laboratory abnormalities on identifying potentially preventable adverse drug events in the intensive care unit and general ward. Therapeutic Advances in Drug Safety 2018; 9(4): 207 doi: 10.1177/2042098618760995
|
14 |
Yu-Kai Lin, Xiao Fang. First, Do No Harm: Predictive Analytics to Reduce In-Hospital Adverse Events. SSRN Electronic Journal 2018; doi: 10.2139/ssrn.3273203
|
15 |
Chun Yen Lee, Yi-Ping Phoebe Chen. Machine learning on adverse drug reactions for pharmacovigilance. Drug Discovery Today 2019; 24(7): 1332 doi: 10.1016/j.drudis.2019.03.003
|