For: | Phadke M, Krynetskaia N, Mishra A, Barrero C, Merali S, Gothe SA, Krynetskiy E. Disruption of NAD+ binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions. World J Biol Chem 2015; 6(4): 366-378 [PMID: 26629320 DOI: 10.4331/wjbc.v6.i4.366] |
---|---|
URL: | https://www.wjgnet.com/1949-8454/full/v6/i4/366.htm |
Number | Citing Articles |
1 |
Elsa D. Garcin. GAPDH as a model non-canonical AU-rich RNA binding protein. Seminars in Cell & Developmental Biology 2019; 86: 162 doi: 10.1016/j.semcdb.2018.03.013
|
2 |
Maria Letizia Taddei, Elisa Pardella, Erica Pranzini, Giovanni Raugei, Paolo Paoli. Role of tyrosine phosphorylation in modulating cancer cell metabolism. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2020; 1874(2): 188442 doi: 10.1016/j.bbcan.2020.188442
|
3 |
Melanie R. McReynolds, Karthikeyani Chellappa, Joseph A. Baur. Age-related NAD+ decline. Experimental Gerontology 2020; 134: 110888 doi: 10.1016/j.exger.2020.110888
|
4 |
Nadezhda Frolova, Daria Gorbach, Christian Ihling, Tatiana Bilova, Anastasia Orlova, Elena Lukasheva, Ksenia Fedoseeva, Irina Dodueva, Lyudmila A. Lutova, Andrej Frolov. Proteome and Metabolome Alterations in Radish (Raphanus sativus L.) Seedlings Induced by Inoculation with Agrobacterium tumefaciens. Biomolecules 2025; 15(2): 290 doi: 10.3390/biom15020290
|
5 |
He Meng, Michael C. Fitzgerald. Proteome-Wide Characterization of Phosphorylation-Induced Conformational Changes in Breast Cancer. Journal of Proteome Research 2018; 17(3): 1129 doi: 10.1021/acs.jproteome.7b00795
|
6 |
Michael A. Sirover. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH). 2017; : 3 doi: 10.1016/B978-0-12-809852-3.00001-7
|
7 |
Helen S. Tang, Chelsea R. Gates, Michael C. Schultz, Prasanth Puthanveetil. Biochemical evidence that the whole compartment activity behavior of GAPDH differs between the cytoplasm and nucleus. PLOS ONE 2023; 18(8): e0290892 doi: 10.1371/journal.pone.0290892
|