For: | Funato N, Nakamura M, Yanagisawa H. Molecular basis of cleft palates in mice. World J Biol Chem 2015; 6(3): 121-138 [PMID: 26322171 DOI: 10.4331/wjbc.v6.i3.121] |
---|---|
URL: | https://www.wjgnet.com/1949-8454/full/v6/i3/121.htm |
Number | Citing Articles |
1 |
Veronika Anita Deák, Philipp Skroblin, Carsten Dittmayer, Klaus-Peter Knobeloch, Sebastian Bachmann, Enno Klussmann. The A-kinase Anchoring Protein GSKIP Regulates GSK3β Activity and Controls Palatal Shelf Fusion in Mice. Journal of Biological Chemistry 2016; 291(2): 681 doi: 10.1074/jbc.M115.701177
|
2 |
Carolina López González, Héctor Aquiles Maldonado Martínez, Salvador García López, María del Carmen Rosas Ramírez, Fernando López Casillas, Araceli Pérez González, Dulce Haydeé Gutiérrez Valdez. Inmunoexpresión del factor de crecimiento transformante β3 (TGF-β3) y del receptor III del factor de crecimiento transformante β (TGF β-RIII) en pacientes pediátricos con paladar hendido completo o incompleto no sindromático. Revista Mexicana de Ortodoncia 2017; 5(4): 214 doi: 10.1016/j.rmo.2018.01.003
|
3 |
Zhan Gao, Yongjun Bu, Xiaozhuan Liu, Xugang Wang, Guofu Zhang, Erhui Wang, Shibin Ding, Yongfeng Liu, Ruling Shi, Qiaoyun Li, Jianhong Fu, Zengli Yu. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling. Toxicology and Applied Pharmacology 2016; 298: 48 doi: 10.1016/j.taap.2016.03.005
|
4 |
Lungang Shi, Binchen Li, Binna Zhang, Congyuan Zhen, Jianda Zhou, Shijie Tang. Mouse embryonic palatal mesenchymal cells maintain stemness through the PTEN-Akt-mTOR autophagic pathway. Stem Cell Research & Therapy 2019; 10(1) doi: 10.1186/s13287-019-1340-8
|
5 |
Brian J. Paul, Kristina J. Palmer, Lindsey Rhea, Melissa Carlson, Jocelyn C. Sharp, C. Herbert Pratt, Stephen A. Murray, Martine Dunnwald. The Mafb cleft‐associated variant H131Q is not required for palatogenesis in the mouse. Developmental Dynamics 2021; 250(10): 1463 doi: 10.1002/dvdy.327
|
6 |
Shihai Jia, Jing Zhou, Rena N. D'Souza. Pax9's dual roles in modulating Wnt signaling during murine palatogenesis. Developmental Dynamics 2020; 249(10): 1274 doi: 10.1002/dvdy.189
|
7 |
Noriko Funato, Hiromi Yanagisawa. Deletion of the T-box transcription factor gene, Tbx1, in mice induces differential expression of genes associated with cleft palate in humans. Archives of Oral Biology 2018; 95: 149 doi: 10.1016/j.archoralbio.2018.08.001
|
8 |
Xiaotong Wang, Xia Peng, Jing Chen, Yijia Wang, Xige Zhao, Tianli Li, Juan Du. Comparative analysis of mouse embryonic palatal mesenchymal cells isolated by two primary culture methods. Tissue and Cell 2022; 76: 101783 doi: 10.1016/j.tice.2022.101783
|
9 |
Kurt Reynolds, Priyanka Kumari, Lessly Sepulveda Rincon, Ran Gu, Yu Ji, Santosh Kumar, Chengji J. Zhou. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Disease Models & Mechanisms 2019; 12(2) doi: 10.1242/dmm.037051
|
10 |
Joonho Suh, Je‐Hyun Eom, Na‐Kyung Kim, Kyung Mi Woo, Jeong‐Hwa Baek, Hyun‐Mo Ryoo, Se‐Jin Lee, Yun‐Sil Lee. Growth differentiation factor 11 locally controls anterior–posterior patterning of the axial skeleton. Journal of Cellular Physiology 2019; 234(12): 23360 doi: 10.1002/jcp.28904
|
11 |
J.D. Oliver, E.C. Turner, L.R. Halpern, S. Jia, P. Schneider, R.N. D’Souza. Molecular Diagnostics and In Utero Therapeutics for Orofacial Clefts. Journal of Dental Research 2020; 99(11): 1221 doi: 10.1177/0022034520936245
|
12 |
Mārtiņš Vaivads, Ilze Akota, Māra Pilmane. Immunohistochemical Evaluation of BARX1, DLX4, FOXE1, HOXB3, and MSX2 in Non-syndromic Cleft-affected Tissue. Acta medica Lituanica 2022; 29(2) doi: 10.15388/Amed.2022.29.2.13
|
13 |
Katiúcia Batista Silva Paiva, Clara Soeiro Maas, Pâmella Monique dos Santos, José Mauro Granjeiro, Ariadne Letra. Extracellular Matrix Composition and Remodeling: Current Perspectives on Secondary Palate Formation, Cleft Lip/Palate, and Palatal Reconstruction. Frontiers in Cell and Developmental Biology 2019; 7 doi: 10.3389/fcell.2019.00340
|
14 |
Noriko Funato, Masataka Nakamura. Identification of shared and unique gene families associated with oral clefts. International Journal of Oral Science 2017; 9(2): 104 doi: 10.1038/ijos.2016.56
|
15 |
Aline Cristina da Silva Trevizan, Andréa Guedes Barreto Gonçales, Bruna Stuchi Centurion Pagin, Otávio Pagin, Lucimara Teixeira das Neves. Rare and Multiple Hypodontia in Van der Woude Syndrome: Case Report. The Cleft Palate Craniofacial Journal 2023; 60(2): 243 doi: 10.1177/10556656211058265
|
16 |
Noriko Funato. Craniofacial Phenotypes and Genetics of DiGeorge Syndrome. Journal of Developmental Biology 2022; 10(2): 18 doi: 10.3390/jdb10020018
|
17 |
Anne Vaiman, Sébastien Fritz, Christian Beauvallet, Mekki Boussaha, Cécile Grohs, Nathalie Daniel-Carlier, Anne Relun, Didier Boichard, Jean-Luc Vilotte, Amandine Duchesne. Mutation of the MYH3 gene causes recessive cleft palate in Limousine cattle. Genetics Selection Evolution 2022; 54(1) doi: 10.1186/s12711-022-00762-2
|
18 |
Jue Xu, Linyan Wang, Hua Li, Tianfang Yang, Yanding Zhang, Tao Hu, Zhen Huang, YiPing Chen. Shox2 regulates osteogenic differentiation and pattern formation during hard palate development in mice. Journal of Biological Chemistry 2019; 294(48): 18294 doi: 10.1074/jbc.RA119.008801
|
19 |
Jeremy P. Goering, Dona G. Isai, Everett G. Hall, Nathan R. Wilson, Edina Kosa, Luke W. Wenger, Zaid Umar, Abdul Yousaf, Andras Czirok, Irfan Saadi. SPECC1L-deficient primary mouse embryonic palatal mesenchyme cells show speed and directionality defects. Scientific Reports 2021; 11(1) doi: 10.1038/s41598-021-81123-9
|
20 |
Glenda Comai, Agnès Boutet, Kristina Tanneberger, Filippo Massa, Ana-Sofia Rocha, Aurelie Charlet, Clara Panzolini, Fariba Jian Motamedi, Robert Brommage, Wolfgang Hans, Thomas Funck-Brentano, Martin Hrabe de Angelis, Christine Hartmann, Martine Cohen-Solal, Jürgen Behrens, Andreas Schedl. Genetic and Molecular Insights Into Genotype-Phenotype Relationships in Osteopathia Striata With Cranial Sclerosis (OSCS) Through the Analysis of Novel Mouse Wtx Mutant Alleles. Journal of Bone and Mineral Research 2018; 33(5): 875 doi: 10.1002/jbmr.3387
|
21 |
Paul P. R. Iyyanar, Adil J. Nazarali. Hoxa2 Inhibits Bone Morphogenetic Protein Signaling during Osteogenic Differentiation of the Palatal Mesenchyme. Frontiers in Physiology 2017; 8 doi: 10.3389/fphys.2017.00929
|
22 |
S. Jia, J. Zhou, Y. Wee, M.L. Mikkola, P. Schneider, R.N. D’Souza. Anti-EDAR Agonist Antibody Therapy Resolves Palate Defects in Pax9-/- Mice. Journal of Dental Research 2017; 96(11): 1282 doi: 10.1177/0022034517726073
|
23 |
Xiaoyan Chen, Nan Li, Ping Hu, Leilei Li, Danya Li, Han Liu, Lei Zhu, Jing Xiao, Chao Liu. Deficiency of Fam20b-Catalyzed Glycosaminoglycan Chain Synthesis in Neural Crest Leads to Cleft Palate. International Journal of Molecular Sciences 2023; 24(11): 9634 doi: 10.3390/ijms24119634
|
24 |
Carolina López González, Héctor Aquiles Maldonado Martínez, Salvador García López, María del Carmen Rosas Ramírez, Fernando López Casillas, Araceli Pérez González, Dulce Haydeé Gutiérrez Valdez. Immunoexpression of transforming growth factor-β3 (TGF-β3) and receptor III of β transforming growth factor (TGF β-RIII) in pediatric patients with complete or incomplete non-syndromic cleft palate. Revista Mexicana de Ortodoncia 2017; 5(4): e210 doi: 10.1016/j.rmo.2018.01.012
|
25 |
X. Fu, J. Xu, P. Chaturvedi, H. Liu, R. Jiang, Y. Lan. Identification of Osr2 Transcriptional Target Genes in Palate Development. Journal of Dental Research 2017; 96(12): 1451 doi: 10.1177/0022034517719749
|
26 |
Eloise Stanton, Samuel Sheridan, Mark Urata, Yang Chai. From Bedside to Bench and Back: Advancing Our Understanding of the Pathophysiology of Cleft Palate and Implications for the Future. The Cleft Palate Craniofacial Journal 2024; 61(5): 759 doi: 10.1177/10556656221142098
|
27 |
Jeremie D. Oliver, Shihai Jia, Leslie R. Halpern, Emily M. Graham, Emma C. Turner, John S. Colombo, David W. Grainger, Rena N. D'Souza. Innovative Molecular and Cellular Therapeutics in Cleft Palate Tissue Engineering. Tissue Engineering Part B: Reviews 2021; 27(3): 215 doi: 10.1089/ten.teb.2020.0181
|
28 |
Shihai Jia, Jing Zhou, Christopher Fanelli, Yinshen Wee, John Bonds, Pascal Schneider, Gabriele Mues, Rena N. D'Souza. Small-molecule Wnt agonists correct cleft palates in Pax9 mutant mice in utero
. Development 2017; 144(20): 3819 doi: 10.1242/dev.157750
|
29 |
Jin-Feng Zhang, Wen-Bin Zhang. Successful treatment of congenital palate perforation: A case report. World Journal of Clinical Cases 2020; 8(1): 175-178 doi: 10.12998/wjcc.v8.i1.175
|
30 |
Everett G Hall, Luke W Wenger, Nathan R Wilson, Sraavya S Undurty-Akella, Jennifer Standley, Eno-Abasi Augustine-Akpan, Youssef A Kousa, Diana S Acevedo, Jeremy P Goering, Lenore Pitstick, Nagato Natsume, Shahnawaz M Paroya, Tamara D Busch, Masaaki Ito, Akihiro Mori, Hideto Imura, Laura E Schultz-Rogers, Eric W Klee, Dusica Babovic-Vuksanovic, Sarah A Kroc, Wasiu L Adeyemo, Mekonen A Eshete, Bryan C Bjork, Satoshi Suzuki, Jeffrey C Murray, Brian C Schutte, Azeez Butali, Irfan Saadi. SPECC1L regulates palate development downstream of IRF6. Human Molecular Genetics 2020; 29(5): 845 doi: 10.1093/hmg/ddaa002
|
31 |
Ratnam S. Seelan, M. Michele Pisano, Robert M. Greene. MicroRNAs as epigenetic regulators of orofacial development. Differentiation 2022; 124: 1 doi: 10.1016/j.diff.2022.01.002
|