For: | Rahajeng J, Giridharan SSP, Cai B, Naslavsky N, Caplan S. Important relationships between Rab and MICAL proteins in endocytic trafficking. World J Biol Chem 2010; 1(8): 254-264 [PMID: 21537482 DOI: 10.4331/wjbc.v1.i8.254] |
---|---|
URL: | https://www.wjgnet.com/1949-8454/full/v1/i8/254.htm |
Number | Citing Articles |
1 |
Y. Wang, W. Deng, Y. Zhang, S. Sun, S. Zhao, Y. Chen, X. Zhao, L. Liu, J. Du. MICAL2 promotes breast cancer cell migration by maintaining epidermal growth factor receptor (EGFR) stability and EGFR/P38 signalling activation. Acta Physiologica 2018; 222(2) doi: 10.1111/apha.12920
|
2 |
Yixing Yang, Fengwen Ye, Tianxiang Xia, Qianwen Wang, Yujie Zhang, Jun Du. High MICAL-L2 expression and its role in the prognosis of colon adenocarcinoma. BMC Cancer 2022; 22(1) doi: 10.1186/s12885-022-09614-0
|
3 |
Modian Liu, Chun Huang, Rongfeng Dai, Wenwen Ren, Xinyi Li, Xiaoyun Wu, Xiaoming Ma, Min Chu, Pengjia Bao, Xian Guo, Jie Pei, Lin Xiong, Ping Yan, Chunnian Liang. Copy Number Variations in the MICALL2 and MOGAT2 Genes Are Associated with Ashidan Yak Growth Traits. Animals 2022; 12(20): 2779 doi: 10.3390/ani12202779
|
4 |
Pengxiang Min, Lin Zhang, Yueyuan Wang, Chenxiang Qi, Yixuan Song, Maria Bibi, Yujie Zhang, Yadong Ma, Xuyang Zhao, Minjie Yu, Jun Du. MICAL-L2 Is Essential for c-Myc Deubiquitination and Stability in Non-small Cell Lung Cancer Cells. Frontiers in Cell and Developmental Biology 2021; 8 doi: 10.3389/fcell.2020.575903
|
5 |
Atsuhiro Nakajo, Shin-ichiro Yoshimura, Hiroko Togawa, Masataka Kunii, Tomohiko Iwano, Ayaka Izumi, Yuria Noguchi, Ayako Watanabe, Ayako Goto, Toshiro Sato, Akihiro Harada. EHBP1L1 coordinates Rab8 and Bin1 to regulate apical-directed transport in polarized epithelial cells. Journal of Cell Biology 2016; 212(3): 297 doi: 10.1083/jcb.201508086
|
6 |
Jachen A. Solinger, Anne Spang. Sorting of cargo in the tubular endosomal network. BioEssays 2022; 44(12) doi: 10.1002/bies.202200158
|
7 |
Ayuko Sakane, Ahmed Alamir Mahmoud Abdallah, Kiyoshi Nakano, Kazufumi Honda, Wataru Ikeda, Yumiko Nishikawa, Mitsuru Matsumoto, Natsuki Matsushita, Toshio Kitamura, Takuya Sasaki. Rab13 Small G Protein and Junctional Rab13-binding Protein (JRAB) Orchestrate Actin Cytoskeletal Organization during Epithelial Junctional Development. Journal of Biological Chemistry 2012; 287(51): 42455 doi: 10.1074/jbc.M112.383653
|
8 |
Maria Antonietta Vanoni. Structure-function studies of MICAL, the unusual multidomain flavoenzyme involved in actin cytoskeleton dynamics. Archives of Biochemistry and Biophysics 2017; 632: 118 doi: 10.1016/j.abb.2017.06.004
|
9 |
Emi Mizuno-Yamasaki, Felix Rivera-Molina, Peter Novick. GTPase Networks in Membrane Traffic. Annual Review of Biochemistry 2012; 81(1): 637 doi: 10.1146/annurev-biochem-052810-093700
|
10 |
Stéphane Frémont, Guillaume Romet-Lemonne, Anne Houdusse, Arnaud Echard. Emerging roles of MICAL family proteins – from actin oxidation to membrane trafficking during cytokinesis. Journal of Cell Science 2017; 130(9): 1509 doi: 10.1242/jcs.202028
|
11 |
Maria Vanoni, Teresa Vitali, Daniela Zucchini. MICAL, the Flavoenzyme Participating in Cytoskeleton Dynamics. International Journal of Molecular Sciences 2013; 14(4): 6920 doi: 10.3390/ijms14046920
|
12 |
Eljo Y. Van Battum, Rou-Afza F. Gunput, Suzanne Lemstra, Ewout J.N. Groen, Ka Lou Yu, Youri Adolfs, Yeping Zhou, Casper C. Hoogenraad, Yukata Yoshida, Melitta Schachner, Anna Akhmanova, R. Jeroen Pasterkamp. The intracellular redox protein MICAL-1 regulates the development of hippocampal mossy fibre connections. Nature Communications 2014; 5(1) doi: 10.1038/ncomms5317
|
13 |
Yeping Zhou, Rou-Afza F. Gunput, Youri Adolfs, R. Jeroen Pasterkamp. MICALs in control of the cytoskeleton, exocytosis, and cell death. Cellular and Molecular Life Sciences 2011; 68(24): 4033 doi: 10.1007/s00018-011-0787-2
|
14 |
Wenjie Deng, Yueyuan Wang, Luo Gu, Biao Duan, Jie Cui, Yujie Zhang, Yan Chen, Shixiu Sun, Jing Dong, Jun Du. MICAL1 controls cell invasive phenotype via regulating oxidative stress in breast cancer cells. BMC Cancer 2016; 16(1) doi: 10.1186/s12885-016-2553-1
|
15 |
Sebastian Montealegre, Peter M. van Endert. Endocytic Recycling of MHC Class I Molecules in Non-professional Antigen Presenting and Dendritic Cells. Frontiers in Immunology 2019; 9 doi: 10.3389/fimmu.2018.03098
|
16 |
Heather H. Ward, Angela Wandinger-Ness. Encyclopedia of Signaling Molecules. 2012; : 1547 doi: 10.1007/978-1-4419-0461-4_19
|
17 |
Yi Sun, Javier Jaldin-Fincati, Zhi Liu, Philip J. Bilan, Amira Klip, Patrick J. Brennwald. A complex of Rab13 with MICAL-L2 and α-actinin-4 is essential for insulin-dependent GLUT4 exocytosis. Molecular Biology of the Cell 2016; 27(1): 75 doi: 10.1091/mbc.E15-05-0319
|
18 |
Tabitha A. Peterson, Robert C. Piper. Rab GTPases. Methods in Molecular Biology 2021; 2293: 117 doi: 10.1007/978-1-0716-1346-7_9
|
19 |
Bernard J. Koch, Joseph F. Ryan, Andreas D. Baxevanis, Olivier Lespinet. The Diversification of the LIM Superclass at the Base of the Metazoa Increased Subcellular Complexity and Promoted Multicellular Specialization. PLoS ONE 2012; 7(3): e33261 doi: 10.1371/journal.pone.0033261
|
20 |
David Villarroel‐Campos, Francisca C. Bronfman, Christian Gonzalez‐Billault. Rab GTPase signaling in neurite outgrowth and axon specification. Cytoskeleton 2016; 73(9): 498 doi: 10.1002/cm.21303
|
21 |
Heather H. Ward, Angela Wandinger-Ness. Encyclopedia of Signaling Molecules. 2018; : 4396 doi: 10.1007/978-3-319-67199-4_19
|
22 |
Xi Qiao, Duy Ngo, Bilinda Straight, Belinda L. Needham, Charles E. Hilton, Amy Naugle. A Bayesian high-dimensional mediation analysis for multilevel genome-wide epigenetic data. Journal of Applied Statistics 2024; : 1 doi: 10.1080/02664763.2024.2367148
|
23 |
Mathilde Chaineau, Maria S. Ioannou, Peter S. McPherson. Rab35: GEFs, GAPs and Effectors. Traffic 2013; 14(11): 1109 doi: 10.1111/tra.12096
|