Copyright
©The Author(s) 2025.
World J Gastrointest Surg. Jul 27, 2025; 17(7): 106724
Published online Jul 27, 2025. doi: 10.4240/wjgs.v17.i7.106724
Published online Jul 27, 2025. doi: 10.4240/wjgs.v17.i7.106724
Table 1 Tumor regression grading systems and prognostic value
TRG system | Description | Prognostic value | Limitations |
mDworak | Evaluates primary tumor + regional LNs; TRG 4 = ypT0N0, TRG 3 = near-complete regression | Best predictor of RFS and OS (Kim et al[21]); C-statistic: 0.6492 (RFS), 0.6783 (OS) | Requires LN assessment, less commonly used |
AJCC | TRG 0-3 scale (complete response to poor response) | Predictive of survival (Kim et al[21]); C-statistic: 0.6359 (RFS), 0.6718 (OS) | Moderate reproducibility |
Dworak | TRG 4 = complete regression, TRG 1 = minimal regression | Associated with survival, but lower reproducibility (Chetty et al[27]) | Interobserver variability (kappa 0.28-0.35) |
Ryan | TRG 0-3 scale; used in multiple cancers | Predictive of recurrence and survival (Kim et al[21]) | Similar performance to AJCC and Dworak |
Mandard | TRG 1-5; based on fibrosis and residual tumor | Predicts DFS in esophageal cancer (Mandard et al[23]) | Lower reproducibility compared to Becker (kappa 0.28) |
Becker | TRG 1a-b (< 10% residual tumor) predictive of survival | High reproducibility | Less widely used outside gastric cancer |
Rödel | TRG 4 = complete regression | Favorable outcomes in rectal cancer (Rödel et al[26]) | Requires histopathological expertise |
Table 2 Biomarkers for predicting neoadjuvant chemoradiotherapy response
Category | Predictors | Key findings |
Clinical markers | Tumor size (< 4 cm), clinical node negativity (cN0), well-differentiated histology | Associated with higher pCR rates (Turri et al[17]) |
Distance to anal verge (< 5 cm), low pretreatment CEA (< 5 µg/L) | Favorable response predictors (Peng et al[33]; Shao et al[32]) | |
Histopathological markers | Low tumor budding, absence of LVI and PNI | Correlates with better nCRT response (Agarwal et al[36]; Rogers et al[35]) |
Mucinous histology | Linked to treatment resistance (Simha et al[37]) | |
Molecular markers | KRAS mutations (resistance), TP53 status (variable), low RAD18, high Beclin 1 | Genetic alterations impact therapy sensitivity (Chow et al[42]; Zaanan et al[41]) |
Epigenetics: CpG island methylation, microRNAs (e.g., miR-21-5p overexpression) | Influence gene expression and therapy resistance (Jo et al[44]; Lopes-Ramos et al[46]) | |
Tumor microenvironment | High CD8+ TILs, low FOXP3+ Tregs, low M2 macrophage density | Favorable immune landscape (McCoy et al[48]; Shabo et al[49]) |
Gut microbiome diversity | Emerging predictor of response (Yi et al[50]) | |
Radiological biomarkers | MRI-based radiomics (T2WI, DWI), CRM, EMVI | MRI features enhance response prediction (Jiang et al[52]; Taylor et al[6]) |
PET-based metabolic response | Functional assessment of tumor viability post-nCRT |
- Citation: Pehlevan-Özel H, Şahingöz E, Altaş M, Tez M. Predicting neoadjuvant chemoradiotherapy response in rectal cancer: Insights from biomarkers to clinical practice. World J Gastrointest Surg 2025; 17(7): 106724
- URL: https://www.wjgnet.com/1948-9366/full/v17/i7/106724.htm
- DOI: https://dx.doi.org/10.4240/wjgs.v17.i7.106724