Copyright
©The Author(s) 2024.
World J Gastrointest Surg. Aug 27, 2024; 16(8): 2602-2611
Published online Aug 27, 2024. doi: 10.4240/wjgs.v16.i8.2602
Published online Aug 27, 2024. doi: 10.4240/wjgs.v16.i8.2602
Table 1 Clinical data analysis of 80 gastric cancer patients, n (%)
Project | PNI positive group (n = 54) | PNI negative group (n = 26) | T/χ2/Z | P value |
Age (years, mean ± SD) | 65.00 ± 8.75 | 66.76 ± 4.82 | -0.823 | 0.416 |
Sex | 4.786 | 0.029 | ||
Male | 42 (78) | 14 (54) | ||
Female | 12 (22) | 12 (46) | ||
Alpha fetoprotein, ng/mL | 2.980 (2.160, 3.650) | 2.590 (1.700, 3.780) | 0.578 | 0.568 |
Carcinoembryonic antigen (ng/mL) | 56.735 ± 268.309 | 2.109 ± 1.085 | 0.729 | 0.470 |
CA125 (U/mL, mean ± SD) | 124.600 ± 540.554 | 9.191 ± 4.435 | 0.765 | 0.449 |
CA199 [U/mL, M (Q1, Q3)] | 16.485 (11.890, 36.635) | 6.77 (3.260, 16.335) | 3.133 | 0.001 |
Tumor thickness (mm, mean ± SD) | 20.149 ± 6.410 | 14.746 ± 5.065 | 2.664 | 0.011 |
Lauren typing | 15.949 | 0.000 | ||
Intestinal type | 16 (30) | 20 (77) | ||
Diffuse type | 16 (30) | 2 (8) | ||
Mixed type | 22 (40) | 4 (15) | ||
Borrmann classification | 13.219 | 0.004 | ||
I | 2 (3) | 2 (7) | ||
Ⅱ | 8 (15) | 12 (47) | ||
Ⅲ | 34 (63) | 6 (23) | ||
IV | 10 (19) | 6 (23) | ||
Differentiation degree | 2.825 | 0.244 | ||
High | 10 (19) | 2 (8) | ||
Middle | 18 (33) | 8 (31) | ||
Low | 26 (48) | 16 (61) |
Table 2 Energy spectrum computed tomography parameter analysis of 80 gastric cancer patients
Project | PNI positive group (n = 54) | PNI negative (n = 26) | T/Z value | P value |
Arterial phase | ||||
CT value [Hu, M (Q1, Q3)] | 67.240 (56.800, 80.290) | 59.130 (52.585, 71.875) | 1.141 | 0.264 |
CT60 kev [Hu, M (Q1, Q3)] | 88.040 (72.260, 107.690) | 62.370 (60.235, 75.330) | 3.018 | 0.002 |
CT70 kev [Hu, M (Q1, Q3)] | 68.690 (59.260, 86.120) | 56.750 (50.760, 67.735) | 2.584 | 0.009 |
CT80 kev (Hu, mean ± SD) | 61.944 ± 14.476 | 50.405 ± 9.996 | 2.584 | 0.014 |
CT90 kev (Hu, mean ± SD) | 54.610 ± 11.875 | 45.160 ± 8.884 | 2.540 | 0.015 |
CT100 kev (Hu, mean ± SD) | 49.912 ± 10.568 | 41.404 ± 8.025 | 2.562 | 0.014 |
CT110 kev (Hu, mean ± SD) | 46.061 ± 9.261 | 38.783 ± 7.537 | 2.463 | 0.018 |
IC [μg/cm³, M (Q1, Q3)] | 14.400 (11.320, 18.720) | 11.310 (10.375, 13.815) | 1.863 | 0.064 |
ICao (μg/cm³, mean ± SD) | 105.161 ± 21.732 | 114.863 ± 18.730 | -1.380 | 0.176 |
NIC [M (Q1, Q3)] | 0.135 (0.097, 0.205) | 0.097 (0.090, 0.125) | 1.891 | 0.060 |
Portal venous phase | ||||
CT value (Hu, mean ± SD) | 97.302 ± 21.606 | 78.460 ± 15.938 | 2.792 | 0.008 |
CT60 kev[Hu, M (Q1, Q3)] | 120.317 ± 28.755 | 97.011 ± 23.240 | 2.544 | 0.015 |
CT70 kev[Hu, M (Q1, Q3)] | 94.877 ± 21.566 | 80.289 ± 19.614 | 2.061 | 0.046 |
CT80 kev (Hu, mean ± SD) | 78.673 ± 17.013 | 65.790 ± 14.930 | 2.329 | 0.125 |
CT90 kev (Hu, mean ± SD) | 67.918 ± 14.126 | 57.403 ± 12.745 | 2.273 | 0.029 |
CT100 kev (Hu, mean ± SD) | 60.452 ± 12.191 | 51.541 ± 11.360 | 2.212 | 0.033 |
CT110 kev (Hu, mean ± SD) | 55.154 ± 10.891 | 47.410 ± 10.376 | 2.138 | 0.039 |
IC [μg/cm³, M (Q1, Q3)] | 55.154 ± 10.891 | 18.270 (13.440, 18.960) | 2.902 | 0.003 |
ICao [ug/cm³, M (Q1, Q3)] | 48.350 (40.200, 52.150) | 44.180 (36.690, 51.945) | 0.462 | 0.648 |
NIC (mean ± SD) | 0.528 ± 0.184 | 0.402 ± 0.098 | 2.799 | 0.008 |
Table 3 Logistic regression analysis results of the model
Factor | β | Corrected OR (95%CI) | P value |
Clinical features | |||
Sex | -5.259 | 0.005 (0-0.318) | 0.012 |
Tumor thickness | 0.351 | 1.421 (1.051-1.920) | 0.022 |
Borrmann typing | 2.167 | 8.732 (1.486-51.324) | 0.016 |
Spectral CT parameters | |||
Arterial phase CT60 kev | 0.065 | 1.067 (1.012-1.124) | 0.016 |
Portal phase NIC | 0.065 | 1.067 (1.012-1.126) | 0.016 |
Imaging omics features | |||
First-order (median) | 0.078 | 1.081 (1.015-1.151) | 0.016 |
Table 4 Diagnostic efficacy of PNI prediction model for gastric cancer
Model name | AUC (95%CI) | Optimal threshold | Yoden index | Sensitivity | Specificity |
Clinical model | 0.858 (0.692-1.000) | 0.486 | 0.772 | 0.926 | 0.845 |
Spectral CT model | 0.832 (0.680-0.983) | 0.531 | 0.695 | 0.925 | 0.769 |
Imaging omics model | 0.897 (0.778-1.000) | 0.718 | 0.809 | 0.963 | 0.845 |
Clinical + spectral model | 0.772 (0.608-0.936) | 0.643 | 0.735 | 0.889 | 0.845 |
Clinical and imaging omics models | 0.842 (0.717-0.967) | 0.67 | 0.584 | 0.815 | 0.769 |
Energy spectrum + imaging omics model | 0.846 (0.720-0.972) | 0.809 | 0.553 | 0.63 | 0.923 |
Clinical + energy spectrum + imaging omics model | 0.927 (0.850-1.000) | 0.879 | 0.778 | 0.778 | 1.00 |
- Citation: Lan YY, Han J, Liu YY, Lan L. Construction of a predictive model for gastric cancer neuroaggression and clinical validation analysis: A single-center retrospective study. World J Gastrointest Surg 2024; 16(8): 2602-2611
- URL: https://www.wjgnet.com/1948-9366/full/v16/i8/2602.htm
- DOI: https://dx.doi.org/10.4240/wjgs.v16.i8.2602