Retrospective Cohort Study
Copyright ©The Author(s) 2023.
World J Gastrointest Surg. Mar 27, 2023; 15(3): 374-386
Published online Mar 27, 2023. doi: 10.4240/wjgs.v15.i3.374
Table 1 Baseline demographic and clinicopathological characteristics of patients with hepatocellular carcinoma
VariablesTraining set
P valueTesting set
Overall (n = 857)
Pain (n = 139)
No-pain (n = 718)
Overall (n = 368)
Age (%), yr
≤ 50199 (23.2)119 (85.6)80 (11.1)< 0.00186 (23.4)
> 50658 (76.8)20 (14.4)638 (88.9)282 (76.6)
Gender (%)
Male445 (51.9)74 (53.2)371 (51.7)0.806151 (41.0)
Female412 (48.1)65 (46.8)347 (48.3)217 (59.0)
BMI [median (IQR)], kg/m224.00 (21.10, 27.10)23.70 (21.10, 27.45)24.00 (21.02, 27.08)0.65824.00 (21.20, 26.70)
Pathogeny (%)
Hepatitis B218 (25.4)31 (22.3)187 (26.0)0.089104 (28.3)
HCV226 (26.4)28 (20.1)198 (27.6)88 (23.9)
Alcoholic liver214 (25.0)39 (28.1)175 (24.4)95 (25.8)
Others199 (23.2)41 (29.5)158 (22.0)81 (22.0)
ECOG (%)
0417 (48.7)63 (45.3)354 (49.3)0.443187 (50.8)
1440 (51.3)76 (54.7)364 (50.7)181 (49.2)
TACE (%)
Yes445 (51.9)70 (50.4)375 (52.2)0.756169 (45.9)
No412 (48.1)69 (49.6)343 (47.8)199 (54.1)
HHS (%)
Yes414 (48.3)73 (52.5)341 (47.5)0.321195 (53.0)
No443 (51.7)66 (47.5)377 (52.5)173 (47.0)
PrP (%)
Yes204 (23.8)130 (93.5)74 (10.3)< 0.00191 (24.7)
No653 (76.2)9 (6.5)644 (89.7)277 (75.3)
MDT (%), cm
≤ 10416 (48.5)76 (54.7)340 (47.4)0.137193 (52.4)
> 10441 (51.5)63 (45.3)378 (52.6)175 (47.6)
LOET (%)
Left437 (51.0)80 (57.6)357 (49.7)0.11189 (51.4)
Right420 (49.0)59 (42.4)361 (50.3)179 (48.6)
NOET (%)
Single683 (79.7)21 (15.1)662 (92.2)< 0.001280 (76.1)
Multiple174 (20.3)118 (84.9)56 (7.8)88 (23.9)
PVTT (%)
Yes438 (51.1)72 (51.8)366 (51.0)0.932185 (50.3)
No419 (48.9)67 (48.2)352 (49.0)183 (49.7)
DFLS (%), cm
> 2646 (75.4)16 (11.5)630 (87.7)< 0.001268 (72.8)
≤ 2211 (24.6)123 (88.5)88 (12.3)100 (27.2)
CTPG (%)
Grade A442 (51.6)75 (54.0)367 (51.1)0.602176 (47.8)
Grade B415 (48.4)64 (46.0)351 (48.9)192 (52.2)
OpD (%), h
≤ 1452 (52.7)83 (59.7)369 (51.4)0.088184 (50.0)
> 1405 (47.3)56 (40.3)349 (48.6)184 (50.0)
ES (%)
Yes437 (51.0)72 (51.8)365 (50.8)0.908187 (50.8)
No420 (49.0)67 (48.2)353 (49.2)181 (49.2)
LOD (%), mL
≤ 10630 (73.5)21 (15.1)609 (84.8)< 0.001260 (70.7)
> 10227 (26.5)118 (84.9)109 (15.2)108 (29.3)
Albumin [median (IQR)], g/L36.12 (33.45, 38.63)36.11 (33.50, 38.81)36.12 (33.43, 38.57)0.68836.03 (33.42, 38.73)
PT [median (IQR)], s12.70 (12.30, 13.20)12.60 (12.30, 13.10)12.70 (12.30, 13.20)0.55912.70 (12.30, 13.10)
PTA [median (IQR)], %82.25 (77.12, 86.60)90.20 (87.26, 93.18)80.33 (76.45, 84.36)< 0.00182.29 (77.81, 86.83)
TBIL [median (IQR)], g/L16.17 (12.95, 19.37)16.20 (13.34, 19.27)16.16 (12.88, 19.39)0.97216.12 (13.25, 19.23)
ALT [median (IQR)], U/L33.00 (27.00, 40.00)34.00 (24.50, 40.00)33.00 (27.00, 40.75)0.44634.00 (26.00, 41.00)
AST [median (IQR)], U/L42.00 (35.00, 48.00)44.00 (35.00, 49.00)41.00 (35.00, 48.00)0.09142.00 (34.00, 48.25)
PLT [median (IQR)], 109136.00 (104.00, 163.00)138.00 (104.00, 160.00)135.50 (104.00, 164.00)0.749130.50 (100.00, 160.25)
Table 2 The receiver operating characteristic curve analyses for pain risk in each machine learning-based model
ModelTraining set
Testing set
AUC mean
AUC 95%CI
AUC mean
AUC 95%CI
RFM0.8690.816-0.9220.8710.818-0.924
DTM0.8610.808-0.9140.8640.811-0.917
ANNM0.8260.773-0.8790.8270.774-0.880
SVMM0.8030.750-0.8560.8080.755-0.861
NBM0.7980.745-0.8510.8030.750-0.856