姚红兵, 510280,广东省广州市, 中国人民解放军第一军医大学珠江医院普通外科. luckstar0503@163. com
本文章的类型
文献综述
本文章的开放获取政策
This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
近年来流行病学、动物学实验以及细胞学实验等多方面的研究表明, COX-2在多种肿瘤中有较高的表达, 并被认为参与了肿瘤新生血管的生成. 诱导COX-2表达的刺激因子很多, 包括细胞因子、生长因子、癌基因(如ras)、促癌剂、一氧化氮、胆汁酸、胃泌素等. 研究表明COX-2的过度表达与肿瘤的发生、发展密切相关. 许多实验证实, COX-2在CRC组织中的高表达, 主要反映在COX-2的蛋白水平及mRNA上[1-3] . Tjandrawinata et al [4]认为COX-2被激活后导致PGE2合成增加, 有利于CRC细胞的持续生长. Maekawa et al [5]检测人CRC、腺瘤性息肉和正常黏膜中COX-2 mRNA后发现, 92 % (46/50)CRC组织中COX-2 mRNA含量明显增高, 而腺瘤性息肉与正常黏膜中COX-2mRNA表达无明显差异, 也认为COX-2含量增加可能是CRC发生的早期事件. Hao et al [6,7]研究认为结直肠息肉和腺瘤中COX-2 mRNA和蛋白水平明显高于正常组织, 但二者之间无显著性差异, 也提示COX-2是肿瘤发生的早期事件. Sheehan et al [8]研究了COX-2与Ducks的肿瘤分级的关系后认为Ducks程度越差, 肿瘤越大, 有淋巴转移的病例其COX-2表达越强. 实验研究中Oshima发现敲除COX-2基因的小鼠FAP模型其肠腺瘤形成受阻, 用COX-2抑制剂也能减少腺瘤形成[9]. 从而在遗传学上直接证明了COX-2是CRC发生的关键因素之一. 新近研究[10-14]也发现在大肠的正常黏膜、原发癌组织及转移癌组织中COX-2的表达依次增高, 且高表达的COX-2与CRC的进展分期相关, 进一步证明了COX-2可能参与了CRC的肿瘤发生及发展.
2 环氧化酶-2在CRC发生、发展中可能的作用机制
2.1 促进肿瘤血管形成及侵袭转移
研究显示, COX-2主要表达在新生的血管内皮细胞及与血管生成有关的细胞, 周边已存在的血管则表达COX-1而无COX-2的表达[15]. COX-2促血管生成也是CRC侵袭转移的因素之一. 有研究发现COX-2和VEGF表达基本一致, 且其增高幅度与恶性程度相关[16]. 表明COX-2通过影响VEGF参与了肿瘤新生血管的生成. COX-2在肿瘤中的定位研究进一步验证COX-2可能与肿瘤新生血管生成有关. 对结肠癌等鳞癌的研究表明, 除了肿瘤细胞表达COX-2外, 肿瘤及其邻近的新生血管均有COX-2的表达[17]. 可见, COX-2除在癌细胞表达外, 更主要表达于肿瘤的新生血管. 有资料证实, COX-2的确可使肿瘤中VEGF表达上调, 抑制COX-2则可抑制VEGF的表达[18,19]. 与不表达COX-2的CRC细胞系CaCo-2比较, Tsujii et al [20] 发现表达COX-2的CaCo-2存在金属蛋白酶-2 (MMP-2)的激活和膜金属蛋白酶的mRNA水平增加, 侵袭性增加, 结果认为COX-2激活增加了癌细胞侵袭能力. Masunaga et al [21]研究发现COX-2还可上调基质金属蛋白酶的表达, 降解细胞外基质, 并上调肿瘤相关血管因子的表达, 促进肿瘤血管形成而增加其侵袭及转移活性, 不利于预后. Chen et al [22]用免疫组化检测的17例有肝转移的结肠癌中, 14例在原发灶有比正常肠黏膜明显增高的COX-2表达, 且他们的肝转移灶COX-2的表达则几乎都较原发灶更高, 提示COX-2参与了肿瘤的侵袭、转移. Cianchi et al [23]应用免疫组化方法发现COX-2与VEGF明显相关, 且二者在CRC组织中表达较正常黏膜增高, 提示COX-2在CRC中与肿瘤的血管生成相关, VEGF可能是COX-2促进肿瘤血管生成通路的重要中介之一. 上述研究资料表明COX-2通过促进肿瘤新生血管生成而参与CRC的发生, 提示COX-2高表达的CRC癌细胞可能更具侵袭性, COX-2有促进肿瘤侵袭和转移的潜能. 但也有研究者采用COX-2/COX-1值作为COX-2指数来描述COX-2表达水平, 发现COX-2在直径较大或侵袭较深的癌中值较高, 但与是否有转移无明显相关[24].
2.2 抑制肿瘤细胞凋亡
Sheng et al [25]在对表达COX-2的CRC细胞株HCA-7研究发现, COX-2的诱导产物PGE2抑制SC-58125所致的程序性细胞死亡(PCD), 诱导Bcl-2表达, 说明COX-2可通过Bcl-2抑制细胞凋亡. Orlov et al [26]也认为COX-2产物PGE2和其他PG类物质可使细胞间cAMP浓度增加, 抑制细胞凋亡. 并且实验中已证实COX-2抑制剂可以降低细胞分裂, 增加细胞的凋亡[27].
2.3 参与氧化诱癌途径
Levy [28]认为COX过氧化酶活性是非特异的, 除了产生PGE外, 还可产生其他作为供电子基团的过氧化物. 许多致癌物如多环芳烃类、黄曲霉素、氯化杀虫剂、芳香胺和酚类物质都能被COX激活成为携带电子的活化物, 通过电子与DNA结合成为DNA-致癌物结合物. COX的另一条致癌途径是产生malondialdehyde (MDA), 这是一种在细菌和哺乳动物鼠的实验模型中能形成多种脱氧核苷酸结合物的致癌物. MDA来源于COX的非酶和酶的降解产物. MDA还能在脂质过氧化反应中形成. Watson et al [29]研究也认为结肠上皮持续表达COX能催化产生MDA. COX的第三条致癌途径是形成过氧化自由基作为中间激活物, 干扰脂质过氧化反应或金属脂蛋白参与的不饱和脂肪酸的过氧化反应, 环化前致癌物中的双链, 从而形成致癌物.
2.4 影响细胞周期的变化
DuBois et al [30]研究中结肠上皮细胞持续表达COX时存在明显的G1期延迟, 而且CyelinD1蛋白激酶, Rb1激酶和细胞周期依赖激酶(CDK4)活性明显下降, 这样通过减慢细胞周期, 阻止凋亡, 有利于延长细胞生存期, 增强对胞外基质的黏附. 而异常延长的生存期则利于向肿瘤方向发展, 促进一系列基因突变, 促使肿瘤生成.
2.5 导致细胞增生信号传导异常
Sano et al [31]用Northern杂交分析发现TGFb 的mRNA水平增加, 并且与COX-2增加相关. 慢性TGF-b 刺激也能使鼠结肠上皮细胞系RIE-1表达COX-2, 提示TGF-b 能调控COX-2的表达. Vadlamudi et al [32]研究认为CRC细胞表达高水平的HER2和HER3受体, 神经分化因子(NDF)通过增加酪氨酸磷酸化和促HER2与HER3异二聚体的形成, 激活COX-2 mRNA和COX-2蛋白, 促进PGE生成. NDF促CRC细胞在缺乏细胞基质的milien存活并具有侵袭性. Ramsay et al [33]的研究中, 转录因子C-myb能激活COX-2转录. Kojima et al [34]发现黏多糖(LPS)可通过核转录因子NK-kB的激活, 促进CRC中COX-2 mRNA的表达, PGE2产生增加.
3 COX-2选择性抑制剂在CRC防治研究中的应用
诸多的研究都为COX-2在CRC的发生、发展中的重要作用提供了有力的证据, COX-2将成为CRC防治研究的一个新靶点. 目前复发转移仍是影响CRC患者生存率的主要原因, 也是CRC研究中亟待解决的难题. Tomozawa et al [35]研究了进展期CRC患者的COX-2表达及其与患者临床病理转归的关系, 发现高表达COX-2与CRC复发明显相关, 尤其易发生血行转移, 并可被COX-2特异性抑制剂所抑制[35-38]. Hao et al [6,39,40]研究也发现选择性COX-2抑制剂可抑制结肠腺瘤和腺癌的产生和转移. Oshima[9]的实验证明在结肠息肉和CRC的治疗预防中, COX-2选择性抑制剂能成为侯选药物之一. 实验中已证实COX-2抑制剂可以降低细胞分裂, 增加细胞的凋亡[41-43], 并有抗血管增生作用[15,44]. 新近的一些研究资料为今后临床开发应用选择性COX-2抑制剂早期防治结直肠癌及其复发转移提供了科学的依据[45,46]. 也提示选择性COX-2抑制剂不仅有望成为有效的CRC及其癌前病变二级预防药物之一, 更重要的意义在于其可能对CRC的复发转移具有重要的临床治疗价值. 因此, 选择性COX-2抑制剂的深入研究及临床应用有望在CRC复发转移的防治及其早期病变的化学预防领域取得突破性进展, 这也必将为CRC复发转移的临床治疗开创新的思路和途径.
Tsunozaki H, Yoshinaga K, Kumagai J, Sugihara K. Cyclooxygenase-2 overexpression in colorectal cancer is associated with non-polypoid growth.Jpn J Clin Oncol. 2002;32:167-171.
[PubMed] [DOI]
Chapple KS, Scott N, Guillou PJ, Coletta PL, Hull MA. Interstitial cell cyclooxygenase-2 expression is associated with increased angiogenesis in human sporadic colorectal adenomas.J Pathol. 2002;198:435-441.
[PubMed] [DOI]
Tjandrawinata RR, Dahiya R, Hughes-Fulford M. Induction of cyclo-oxygenase-2 mRNA by Prostaglandin E2 in human prostatic carcinoma cells.Br J Cancer. 1997;75:1111-1118.
[PubMed] [DOI]
Maekawa M, Sugano K, Sano H, Miyazaki S, Ushiama M, Fujita S, Gotoda T, Yokota T, Ohkura H, Kakizoe T. Increased expression of cyclooxygenase-2 to-1 in human colorectal cancers and adenomas, but not in hyperplastic polyps.Jpn J Clin Oncol. 1998;28:421-426.
[PubMed] [DOI]
Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2).Cell. 1996;87:803-809.
[PubMed] [DOI]
Zhang H, Sun XF. Overexpression of cyclooxygenase-2 correlates with advanced stages of colorectal cancer.Am J Gastro-enterd. 2002;97:1037-1041.
[PubMed] [DOI]
Elder DJ, Baker JA, Banu NA, Moorghen M, Paraskeva C. Human colorectal adenomas demonstrate a size-dependent increase in epithelial cyclooxygenase-2 expression.J Pathol. 2002;198:428-434.
[PubMed] [DOI]
Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells.Cell. 1998;93:705-716.
[PubMed] [DOI]
Sawaoka H, Tsuji S, Tsujii M, Gunawan ES, Sasaki Y, Kawano S, Hori M. Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo.Lab Invest. 1999;79:1469-1477.
[PubMed] [DOI]
Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, Edwards DA, Flickinger AG, Moore RJ, Seibert K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors.Cancer Res. 2000;60:1306-1311.
[PubMed] [DOI]
Liu XH, Kirschenbuam A, Yao S, Stearns ME, Holland JF, Claffey K, Levine AC. Up-regulation of vascular endothelial growth factor by cobalt chloride-simulated hypoxia is mediated by persistent induction of cyclooxygenase-2 in a metastatic human prostate cancer cell lines.Clin Exp Metastasis. 1999;17:687-694.
[PubMed] [DOI]
Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, Soslow RA, Masferrer JL, Woerner BM, Koki AT. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer.Cancer Res. 1999;59:987-990.
[PubMed] [DOI]
Uefuji K, Ichikura T, Shinomiya N, Mochizuki H. Induction of apoptosis by JTE-522, a specific cyclooxygenase-2 inhibitor, in human gastric cancer cell lines.Anticancer Res. 2000;20:4279-4284.
[PubMed] [DOI]
Uefuji K, Ichikura T, Mochizuki H. Cyclooxygenase-2 expression is related to prostaglandin biosynthesis and angiogenesis in human gastric cancer.Clin Cancer Res. 2000;6:135-138.
[PubMed] [DOI]
Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential.Proc Natl Acad Sci USA. 1997;94:3336-3340.
[PubMed] [DOI]
Masunaga R, Kohno H, Dhar DK, Ohno S, Shibakita M, Kinugasa S, Yoshimura H, Tachibana M, Kubota H, Nagasue N. Cyclooxygenase-2 expression correlates with tumor neovascularization and prognosis in human colorectal carcinoma patients.Clin Cancer Res. 2000;6:4064-4068.
[PubMed] [DOI]
Chen WS, Wei SJ, Liu JM, Hsiao M, Kou-Lin J, Yang WK. Tumor invasiveness and liver metastasis of colon cancer cells correlated with cyclooxygenase-2 (COX-2) expression and inhibited by a COX-2-selective inhibitor, etodolac.Int J Cancer. 2001;91:894-899.
[PubMed] [DOI]
Cianchi F, Cortesini C, Bechi P, Fantappie O, Messerini L, Vannacci A, Sardi I, Baroni G, Boddi V, Mazzanti R. Up-regulation of cyclooxygenase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer.Gastro-entorlogy. 2001;121:1339-1347.
[PubMed] [DOI]
Fujiti T, Matsui M, Takaku K, Uetake H, Ichikawa W, Taketo MM, Sugihara K. Size and invasion-dependent increase in cyclooxygenase-2 levels in human colorectal carcinomas.Cancer Res. 1998;58:4823-4826.
[PubMed] [DOI]
Sheng HM, Shao JY, Morrow JD, Beauchamp RD, DuBois RN. Modulation of apoptosis and Bcl-2 expression by prostaglondin E2 in human colon cancer cells.Cancer Res. 1998;58:362-366.
[PubMed] [DOI]
Orlov SN, Thorin-Trescases N, Dulin NO, Dam TV, Fortuno MA, Tremblay J, Hamet P. Activation of CAMP signaling transiently inhibits apoptosis in vascular smooth muscle cells in a site upstream of caspase-3.Cell Death Differ. 1999;6:661-672.
[PubMed] [DOI]
Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T. The effect of celecoxib ,a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis.N Engl J Med. 2000;342:1946-1952.
[PubMed] [DOI]
Watson AJ. Chemopreventive effects of NSAIDs against colorectal cancer:regulation of apoptosis and mitosis by COX-1 and COX-2.Histol Histopathol. 1998;13:591-597.
[PubMed] [DOI]
Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, Kimura S, Kato H, Kondo M, Hla T. Expression of cyclooxygenase-1 and 2 in human colorectal cancer.Cancer Res. 1995;55:3785-3789.
[PubMed] [DOI]
Vadlamudi R, Mandal M, Adam L, Steinbach G, Mendelsohn J, Kumar R. Regulation of cyclooxygenase-2 pathway by HER2 receptor.Oncogene. 1999;18:305-314.
[PubMed] [DOI]
Ramsay RG, Friend A, Vizantios Y, Freeman R, Sicurella C, Hammett F, Armes J, Venter D. Cyclooxygenase-2, a colorectal cancer nonsteroidal anti-inflammatory drug target, is regulated by c-MYB.Cancer Res. 2000;60:1805-1809.
[PubMed] [DOI]
Kojima M, Morisaki T, Lzuhara K, Uchiyama A, Matsunari Y, Katano M, Tanaka M. Lipopolysaccharide increase cyclo-oxygenase-2 expression in a colon carcinoma cell line through nuclear factor-kB activation.Oncogene. 2000;19:1225-1231.
[PubMed] [DOI]
Tomozawa S, Tsuno NH, Sunami E, Hatano K, Kitayama J, Osada T, Saito S, Tsuruo T, Shibata Y, Nagawa H. Cyclooxygenase-2 over expression correlates with tumour recurrence, especially haematogenous metastasis, of colorectal cancer.Br J Cancer. 2000;83:324-328.
[PubMed] [DOI]
Tomozawa S, Nagawa H, Tsuno N, Hatano K, Osada T, Kitayama J, Sunami E, Nita ME, Ishihara S, Yano H. Inhibition of haematogenous metastasis of colon cancer in mice by a selective COX-2 inhibitor, JTE-522.Br J Cancer. 1999;81:1274-1279.
[PubMed] [DOI]
Murata H, Kawano S, Tsuji S, Tsuji M, Sawaoka H, Kimura Y, Shiozaki H, Hori M. Cyclooxygenase-2 overexpression enhances lymphatic invasion and metastasis in human gastric carcinoma.Am J Gastroenterol. 1999;94:451-455.
[PubMed] [DOI]
Li G, Yang T, Yan J. Cyclooxygenase-2 increased the angiogenic and metastatic potential of tumor cells.Biochem Biophys Res Commun. 2002;299:886-890.
[PubMed] [DOI]
Steinbach G, Lynch PM, Phillips RK, Wallace MH, Hawk E, Gordon GB, Wakabayashi N, Saunders B, Shen Y, Fujimura T. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis.N Engl J Med. 2000;342:1946-1952.
[PubMed] [DOI]
Elder DJ, Halton DE, Hague A, Paraskeva C. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2)-selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression.Clin Cancer Res. 1997;3:1679-1683.
[PubMed] [DOI]
Grossman EM, Longo WE, Mazuski JE, Panesar N, Kaminski DL. Role of cytoplasmic and secretory phospholipase A2 in intestinal epithelial cell prostaglandin E2 formation.Int J Surg Investig. 2000;1:467-476.
[PubMed] [DOI]
Yamauchi T, Watanabe M, Kubota T, Hasegawa H, Ishii Y, Endo T, Kabeshima Y, Yorozuya K, Yamamoto K, Mukai M. Cyclooxygenase-2 expression as a new marker for patients with colorectal cancer.Dis Colon Rectum. 2002;45:98-103.
[PubMed] [DOI]